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Abstract 

To address the issue of reproducibility in computational modeling we developed the concept of 
an executable simulation model (EXSIMO). An EXSIMO combines model, data and code with the 
execution environment to run the computational analysis in an automated manner using tools 
from software engineering. Key components are i) models, data and code for the computational 
analysis; ii) tests for models, data and code; and iii) an automation layer to run tests and execute 
the analysis. An EXSIMO combines version control, model, data, units, annotations, analysis, 
reports, execution environment, testing, continuous integration and release. We applied the 
concept to perform a replication study of a computational analysis of hepatic glucose metabolism 
in the liver. The corresponding EXSIMO is available from 
https://github.com/matthiaskoenig/exsimo. 

Introduction 

We face a crisis in reproducibility [1], where it is impossible to believe most of the computational 
results shown in conferences and papers [2]. Recent replication efforts [3, 4] and theoretical 
considerations indicate that most published research findings in biomedical research are wrong 
[5]. 

A cornerstone of science is the possibility to critically assess the correctness of scientific claims 
and conclusions drawn by other scientists [6]. 

“An article about (computational) science in a scientific publication is not the scholarship 
itself, it is merely advertising of the scholarship. The actual scholarship is the complete ... 
set of instructions and data which generated the figures.” — David Donoho 

To be able to assess computational science we must be able to access the actual scholarship. 
But in the field of computational modeling in biology, most of the published quantitative models 
are lost because they are either not made available or they are insufficiently characterized [7]. 
Furthermore, for most studies neither the code nor data are accessible. Consequently, it is not 
possible to critically evaluate the correctness of the claims of most computational modeling 
analyses. This assessment has two main variants, reproducibility and replicability. 
“Reproducibility” means “running the same software on the same input data and obtaining the 
same results” [8] whereas “replicability” means “writing and then running new software based on 
the description of a computational model or method provided in the original publication, and 
obtaining results that are similar enough ...” [8]. Reproducibility is a minimal standard, that 
something is reproducible does not imply that it is correct, the code most likely contains many 
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bugs and methods may be poorly behaved. Replicability is much more stringent: Can someone 
repeat the experiment and get the same results [9]. 

An often overlooked fact increasing the challenge of reproducibility in computational modeling is 
that there will always be a next version of a computational analysis. The reasons are manifold, 
among them bugs in the model or analysis (or in libraries and software the analysis depends on), 
additional datasets to include in the analysis, additional simulation experiments to run with the 
model, model modifications to include additional processes, or changes in model parameters, to 
name a few. 

To address the issue of reproducibility in versioned computational modeling projects we 
developed the concept of an executable simulation model (EXSIMO). We applied the concept to 
perform a replication study of a computational analysis of hepatic glucose metabolism in the liver 
[10]. 

Results 

To address the issue of reproducibility in the context of versioned computational modeling projects 
we developed the concept of an executable simulation model (EXSIMO). An EXSIMO combines 
model, data and code with the execution environment to run the computational analysis in an 
automated manner using tools from software engineering (Figure 1 and Figure 2). Key 
components are i) models, data and code for the computational analysis; ii) tests for models, data 
and code; and iii) an automation layer to run tests and execute the analysis. To demonstrate the 
concept an example EXSIMO based on a model of glucose metabolism in the liver (Figure 3) [10] 
was created and used to perform a replication study of the original work (Figure 4). In the following 
we walk through the different aspects of an EXSIMO using the example. 

Version Control 

“Talk is cheap. Show me the code.” — Linus Torvalds 

Computational models and the corresponding analysis are continuously changing. Availability of 
all resources in the correct versions, i.e. models, data and code, is a prerequisite to reproduce 
the analysis. To keep track of these changes, EXSIMOs are built on top of version control. In our 
example we take advantage of the features of git and GitHub 
(https://github.com/matthiaskoenig/exsimo, Figure 2H) [11]. By using version control we enable 
collaborative work (merging changes), managing different versions (creating branches), tracking 
of changes (analyzing diffs), reuse (forking the repository), and versioning (using tags) of an 
EXSIMO. By using GitHub important features of managing a software project become available 
for an EXSIMO, e.g., code reviews, issue tracking, releases, team organization, and an 
automation layer via commit hocks, GitHub integrations and GitHub actions. Especially the 
release feature and automation are used heavily in an EXSIMO to automatically trigger testing, 
reporting and creation of release artifacts. Hosting code on publicly available repositories solves 
the code availability issue in most cases. Mangul et al. showed that software tool URLs directing 
the reader to online repositories have a high rate of accessibility; 99% of the links to GitHub and 
96% of the links to SourceForge are accessible, while only 72% of links hosted elsewhere are 
accessible [12]. 

Model 

“A smart model is a good model.” ― Tyra Banks  
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The computational model is a central piece of an EXSIMO. To ensure reproducibility and 
exchangeability of the models they must be encoded in a machine-readable standard exchange 
format. The de facto standard for model representation is SBML (Systems Biology Markup 
Language) [13, 14] and used as model format in the example. The model of hepatic glucose 
metabolism (Figure 3) is a metabolic pathway model based on ordinary differential equations 
(ODE) encoded in SBML using sbmlutils [15]. The model generation code is part of the repository 
and the SBML is generated on the fly during the analysis and in testing. Units and annotations 
(see below) are key meta-data smartening the model. All models are validated with libsbml [16]. 

Data 

“It is a capital mistake to theorize before one has data.” — Sherlock Holmes 

Datasets are a crucial asset for parametrizing a model and for evaluating model predictions.  

Data enables the reuse and modification of models, because the updated model can be fitted and 
its performance can be evaluated. A model without corresponding data sets is not very useful. In 
the example EXSIMO all experimental data were digitized from published figures and tables. 
Datasets are provided as Excel files with corresponding TSVs directly accessible from the reports. 
All data sources are described in [10] and the identical datasets were used in this replication 
study. 

Units 

“Well, I use the metric system, It's the only way to get really exact numbers.” —  

Catherynne M. Valente 

Units are much more than meta-data, because equations only become meaningful if their units 
are clear [17]. A mathematical model without units is not a model. Therefore, an important part of 
an EXSIMO is to clearly define units for all model components. Due to complete unit information 
all model equations can automatically be unit validated (using libsbml model validation [16]). In 
addition units are annotated for all datasets used in the analysis. Only if units are specified on the 
model and datasets it is possible to ensure correct comparison of model predictions with data 
(especially because model units could change). A major advantage of units are automatic unit 
conversions in our example handled by pint within sbmlsim [18].  

Annotations 

“The description is not the described … The thought is not the thing.” — Jiddu Krishnamurti 

Semantic annotations are meta-data making models and data useful. Semantic annotations 
describe the computational or biological meaning of models and data via machine-readable links 
to knowledge resource terms. These annotations help to find models and datasets, accelerate 
model composition and enable knowledge integration between models and experimental data 
[19]. Within the EXSIMO it is tested that the minimum information requested in the annotation of 
biochemical models (MIRIAM [7]) is fulfilled. The example model is annotated using resolvable 
identifiers and resources from identifiers.org [20]. Most model components are annotated with 
sbo terms, species with inchikey, chebi, and kegg.compound terms, reactions with rhea, uniprot, 
go and ec-code terms. In addition, charge and chemical formula are stored for all species which 
allows to perform tests of mass and charge balance on all reactions. 
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Simulation Experiments 

“A computer lets you make more mistakes faster than any invention in human history, with 
the possible exceptions of handguns and tequila.” — Mitch Radcliffe 

In an EXSIMO the actual computational analysis is encoded in the form of simulation experiments 
(similar to SED-ML [21, 22]). Every one of this experiments defines the necessary datasets, 
simulation tasks, and data processing to create output figures for a given question. Specifically, 
we performed a replication study of König et al., 2012 [10] with results depicted in (Figure 3 and 
Figure 4). The individual parts of the replication were encoded in four simulation experiments: i) 
DoseResponseExperiment (Figure 4A-D), PathwayExperiment (Figure 4E-H), 
GlycogenExperiment (Figure 4I-J) and PathwaySSExperiment (Figure 4K-M). 

The original analysis was implemented in Matlab with model equations directly in the code 
simulated with ode15s (no working SBML was available). In this replication an annotated and unit-
validated SBML was created. The individual analyses were reverse-engineered from the original 
figures and encoded in python as simulation experiments using sbmlsim [18]. When things were 
insufficiently described in the publication we used the original source code to clarify issues 
(https://github.com/matthiaskoenig/glucose-model). Replication simulations were performed 
using roadrunner [23]. 

An important outcome based on this replication is that the original model was incorrectly 
implemented in Matlab. Only by translating the ODES to SBML the issues became apparent. 
Specifically, the glycogen pathway was scaled in the ODEs in a manner which was not compatible 
with a species-reaction description. Without any checks and tests on the ODE system, nor tests 
on model structure in Matlab these errors went undetected. As a consequence of this bugs 
numerical differences between the original paper [10] and this replication exist (specifically in the 
glycogen reactions). Replication is defined as repeating the same experiments with different 
methods and getting similar results. All biological relevant model behavior could be replicated with 
very similar outcomes to the original work, i.e. i) dose-response curve of hormones; ii) time-
dependent hepatic glucose production (HGP) via gluconeogenesis (GNG) and glycolysis (GLY) 
as well as the ratio GNG/HGP; iii) time-dependent glycogenolysis and glycogen synthesis under 
various blood glucose concentrations; and iv) steady state scan of HGP, GLY and GNG under 
varying blood glucose and glycogen concentrations. Especially important the correct switching 
points of the pathways are replicated.  

By encoding the model in SBML and adding thorough model tests on top of the SBML validation 
we could ensure correct model behavior in EXSIMO. 

Reports 

“Numbers have an important story to tell. They rely on you to give them a clear and 
convincing voice.” — Stephen Few 

An important aspect of an EXSIMO is a human readable report and summary of the computational 
analysis (Figure 2A-B) available from https://matthiaskoenig.github.io/exsimo/. This includes all 
assets and information for the respective simulation experiments, i.e. models, datasets, figures 
and executed code. These reports are generated automatically from commits to the master 
branch (GitHub-pages serve markdown created in the analysis). The report includes information 
on zenodo DOI, build status, release version, code coverage, corresponding docker image and 
executed simulation experiments. Simulation results are stored in compressed HDF5 for all 
executed simulations (but not tracked in git due to their large file sizes). 
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Execution Environment 

“I don’t care if it works on your machine! We are not shipping your machine!” — Vidiu 
Platon 

To ensure reproducibility of a computational analysis the execution environment must be provided 
as an artifact. Within the EXSIMO, all code is provided as an easily installable package (python 
package installable with pip with dependencies recorded using a requirements file). This allows 
to setup a python virtual environment for the computational analysis via a single line of code for 
instance in testing. Unfortunately, this information is not sufficient to guarantee reproducibility 
because unpinned package versions exist in the package dependency tree (not all versions are 
specified exactly) and package builds depend on system libraries. For most practical aspects 
such an environment can be considered reproducible, but many corner cases exist which can 
break the computational analysis. To solve this issue we distribute in addition the execution 
environment as docker images (https://hub.docker.com/r/matthiaskoenig/exsimo, Figure 2G) with 
builds of the images triggered by GitHub commits. As part of the image creation the complete 
tests and analysis are executed, thereby ensuring the analysis can be run in the container. 

Testing 

“If debugging is the process of removing bugs, then programming must be the process of 
putting them in.” — Edsger Dijkstra 

Unit tests are used to ensure model quality and that all simulation experiments can be executed 
correctly. An overview over tested functionality is depicted in Figure 2D. Tests check for example 
successful SBML generation, validity of the model, existence and correctness of annotations and 
units, mass and charge balance on reactions or cofactor balances. The 984 tests cover 97% of 
the code (Figure 2E, https://codecov.io/gh/matthiaskoenig/exsimo). Similar to the unit and 
integration testing practices in software engineering, example simulations with a description of 
the expected results allows to verify that the EXSIMO was successfully installed and works 
correctly [12]. A similar strategy of using unit tests to ensure model quality has been applied in 
other modeling projects, e.g., for genome-scale metabolic models in memote [24] or in the 
OpenWorm project [25]. 

Continuous Integration 

“The most powerful tool we have as developers is automation.” — Scott Hanselman 

Continuous integration (CI) is the practice of merging code to a shared main code line, i.e. local 
changes to the develop branch or the develop branch to the master branch. CI is used in an 
EXSIMO in combination with automated unit testing, i.e. after every commit all tests are executed 
including running the complete analysis (Figure 2D). Within the example we use travis (Figure 
2C, https://travis-ci.org/matthiaskoenig/exsimo) integrated with GitHub running the tests in the 
defined execution environments. 

Release 

 “It is easier to do a job right than to explain why you didn’t.”— Martin Van Buren 

The final step is to create a release for a given version. This is handled via GitHub releases from 
the master branch, which automatically trigger creation of the reports, upload to zenodo and 
building of the docker image. Zenodo provides a downloadable archive containing model, data, 
code and results which can be referenced uniquely via a DOI (Figure 2F, [26]). Importantly, as 
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part of every release the computational analysis is reproduced and tested on three different 
systems: i) in a local virtual environment; ii) in an ubuntu 18.04 virtual environment during 
continuous integration by travis; iii) in a python 3.6 docker image during building the docker image 
by docker hub (Figure 2G). 

Discussion 

Within this work we presented the concept of an executable simulation model (EXSIMO) with 
reproducibility by design and demonstrated it by performing a replication study of a model of 
glucose metabolism in the liver [10].  

EXSIMOs enable continuous and rapid development of models and computational modeling 
analysis via a workflow closely mimicking how models are developed in the praxis. The presented 
example EXSIMO is one possible implementation of an executable simulation model. For the 
individual parts alternative tools can be chosen. For instance, one could use mercurial with 
sourceforge for version control, use CellML as model description language, encode data in JSON, 
write analysis code in R, create reports in latex, store the execution environment as virtual 
machine, use Jenkins continuous integration, and release to Figshare. The concept remains, only 
the tooling changes. 

Reproducibility in computational modeling builds on top of community-based information 
standards (COMBINE) [27] and FAIR data [28], both integral parts of an EXSIMO. Computational 
models are represented in SBML [13, 14], simulation experiments are compatible to SED-ML [22], 
released archives closely mimic COMBINE archives [29] and annotations utilize BioModels.net 
Qualifiers, identifiers.org URIs [20] and SBO (Systems Biology Ontology) terms. Both, minimal 
information standards for representation of models (MIRIAM) [7] and simulation experiments 
(MIASE) [30] are fulfilled. All data is findable, accessible, interoperable and reusable (FAIR). 
Future work will further improve support for these community standards in the context of 
executable simulation models. 

At the moment it is impossible to believe most of the computational results shown in conferences 
and papers [2]. “An article about (computational) science in a scientific publication is not the 
scholarship itself, it is merely advertising of the scholarship. The actual scholarship is the 
complete set of instructions and data which generated the figures.” [31]. Most papers with 
computational models do neither provide the models in a machine-readable format, the data used 
to fit or evaluate the model, nor the code underlying the analysis. One may ask, how were 
reviewers able to evaluate the actual scholarship in all these publications? Without the ability to 
critically assess the correctness of scientific claims, the scientific methods fails. So next time you 
review an article or grant proposal stop for a second and ask: Is this advertisement or actual 
scholarship? 
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We urgently need a change in culture how computational modeling studies are published, 
reviewed and evaluated by the community. A rigorous standardized approach is needed to 
examine software tools prior to publication [12]. With computational modeling studies being small 
software projects, similar rigorous approaches must be applied. For a publication on 
computational modeling we should not accept less than complete linked and executable code and 
data. Disseminating a computational modeling analysis as an executable simulation model with 
reproducibility by design could be one approach to restore credibility and trust in computational 
modeling. 
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Figure 1. EXecutable SImulation MOdel (EXSIMO).  

An executable simulation model (EXSIMO) applies the tools and methods from software engineering to create high-
quality reproducible model versions. Essential parts are tests to check model quality, datasets to evaluate model 
performance, and the definition of simulation experiments encoding the analysis performed with the model. All steps 
for testing and execution of the simulation model are automated within continuous integration. Formats used in the 
example EXSIMO are depicted in red, tools in blue. All formats are open standards, all tools are open-source and freely 
available for academic use. 
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Figure 2 - EXSIMO outputs. A) Automatically generated report for master branch (GitHub-pages serve markdown at 
https://matthiaskoenig.github.io/exsimo/). Report contains information on zenodo DOI, build status, release version, 
code coverage, corresponding docker image and executed simulation experiments. B) The reports for individual 
simulation experiments contain all SBML models, datasets, figures and code. The DoseResponseExperiment creates 
Figure 4A-D, PathwayExperiment Figure 4E-H, GlycogenExperiment Figure 4I-J, PathwaySSExperiment Figure 3K-M. 
C) Continuous integration with travis (https://travis-ci.org/matthiaskoenig/exsimo). After every commit all tests are 
executed including running the complete analysis. D) Overview over test functionality (984 tests are run in v0.3.2). E) 
Coverage of code by tests (https://codecov.io/gh/matthiaskoenig/exsimo). F) Zenodo release. Code with all results is 
packaged in a downloadable archive with DOI (https://doi.org/10.5281/zenodo.3596068). G) Tested execution 
environments are available as docker image from dockerhub (https://hub.docker.com/r/matthiaskoenig/exsimo). H) 
Code and issues are managed on GitHub with actions triggered by commits on respective branches 
(https://github.com/matthiaskoenig/exsimo). All results correspond to [26]. 
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Figure 3 - Model of Human hepatic glucose 
metabolism. The model was encoded in SBML 
using sbmlutils [15].  Model generation code and 
annotated SBML are available from 
https://github.com/matthiaskoenig/exsimo. 
Visualization was generated from SBML using 
cy3sbml [32, 33]. The biological description of the 
model and its components is available in [10]. 
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Figure 4 - Results replication study. Results from [10] are replicated via simulation experiments. The report including 
SBML models, datasets, figures and code is available from https://matthiaskoenig.github.io/exsimo/). Panels A-D 
correspond to Figure 2A-D (hormonal dose-response curve) in [10], panels E-H to Figure 3A-D (time course of hepatic 
glucose production (HGP), gluconeogenesis (GNG), glycogenolysis (GLY) and contribution of gluconeogenesis to 
hepatic glucose production (GNG/HGP) under varying glucose concentrations), panels I-J to Figure 4A-B (time course 
glycogenolysis and glycogen synthesis under varying glucose concentrations), panels K,L,M to Figure 5A,C,D (steady 
state scan at various glucose and glycogen concentrations of hepatic glucose utilization (HGU), hepatic glucose 
production (HGP), glycolysis, gluconeogenesis, glycogen synthesis and glycogenolysis). For biological interpretation 
see [10]. All results correspond to [26]. Data are means ± SD. 
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