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Editorial

Special Issue: Computational Continuum Biomechanics

The development in the field of computational simulation based on continuum-biomechanical models has made
considerable progress in recent years.

On the one hand, the models and simulations can be used to obtain a deeper insight into the highly complex
biochemical-physical coupled processes in living tissues. This usually requires high-resolution and in some cases
multi-scale models with a high-fidelity level of detail. The computational effort is correspondingly expensive and
high-resolution large-scale calculations can only be performed in parallel on high-performance computers.

On the other hand, the models are already of such high quality that they provide support for therapy decisions in
clinical practice. This requires both robust and fast calculation methods. This is the goal of the newly established
DFG priority program SPP 2311 ”"Robust coupling of continuum-biomechanical in silico models for active biological
systems as a preliminary stage of clinical applications — co-design of modelling, numerics and usability”. The aim is
to develop solution concepts in the co-design of mechanical modelling, numerical solution and medical issue, which
can make a model-based, computer-aided supporting contribution in clinical practice.

This volume presents examples of high-resolution continuum-biomechanical models of the human organs liver, heart,
brain and stomach.

The paper ”Multi-X Modeling of Complex Biological Systems in Health and Disease Using the Liver as a Show-
case” by Tim Ricken, Lena Lambers et al. presents the experiences and challenges of the recently founded Research
Unit QuaLiPerF (FOR 5151). The Research Unit deals with the multiscale modelling of the human liver. Special
attention is given to the integration of physiological data for liver-specific modelling. To achieve successful modelling,
many different disciplines collaborate in QuaLiPerF, including mechanics, bioinformatics, statistics, experimental
animal surgery, cell transplantation, radiology and clinical transplantation.

In the article ”Simulating Clinically Relevant Cases in Cardiology via Numerical Tools” by Baris Cansiz et al.,
the authors give an insight on the finite element-based numerical framework for the simulation of the heart. The
presented computational model enables an application to real-life situations. Here, the authors examine the impact
of different effects, e.g. (de)fibrillation, cardiac resynchronization therapy or the intake of verapamil on the heart
beat showing the cardiac cycle as well as snapshots from representative time steps in the simulation.

The contribution ”Coupling Cellular Brain Development with Cortical Folding” by S. Budday and M. S. Zarzor
deals with the relationship between cellular brain development and cortical folding. The authors investigate the
relationship between mechanical instabilities (leading to cortical formations) to gain better insights into various
neurological disorders. Mechanical instabilities are closely related to cell migration or cellular connectivity. For
this purpose, the authors apply a multi-field computational model (coupling of the advection-diffusion model with
finite growth) to the problem. They can thus demonstrate that computer models based on the nonlinear field
theories of mechanics are a promising tool to transfer processes on the cellular scale to structural changes on the
continuum scale. This approach enables authors to explicitly predict how disturbances at the cellular level affect
growth, folding, and structural anomalies at the continuum scale.

The last article ”Computational Modeling of the Stomach” by R. C. Aydin et al. gives a short overview of
the current state of the art concerning the computational modeling of the gastro-intestinal tract. The authors
divided the topic into five parts to highlight possible topics within each area depending on different backgrounds in
computational mechanics: elasticity of the gastric wall, electric waves in the gastric wall, active muscle tension in
the wall, multi-phase flow of digesta and the fluid-structure interactions.

December 2020

Tim Ricken

Institute of Mechanics, Structural Analysis and Dynamics
Faculty of Aerospace Engineering and Geodesy
University of Stuttgart
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Message of the President

Message of the President

The German Association for Computational Mechanics (GACM) would like to draw the
attention of the readership of this GACM-Report No. 13 to the challenging and fast devel-
oping field of Computational Continuum Biomechanics. Thanks to the efforts of guest editor
Professor Tim Ricken, who’s dedication is acknowledged, four fascinating manuscripts can
be presented illustrating this research. The importance and current momentum of the field
is underlined by the fact that the German Research Foundation (DFG) just established a
national wide Priority Program SPP 2311 on Robust Coupling of Continuum-biomechanical
In Silico Models to Establish Active Biological System Models for Later Use in Clinical Ap-
plications — Co-design of Modelling, Numerics and Usability, which will further foster the
basic research in this field.

Currently, we face in general a challenging situation due to the Covid-19 pandemic. For all of us, life has been
dramatically changed during the last months. The academic and scientific life went nearly totally online instead
of having large conferences or smaller workshops in presence meeting friends and colleagues. Technically, we could
adapt to the new formats relatively fast. Maybe, we even can identify some positive aspects as we do not lose
any time in travelling and more people more easily can join the online formats. These meetings are not virtual
— they are real — even though online. Surely, we all miss the social components and many facets which are less
present in these online gatherings. Nevertheless, for the sake of our safety, we do not have any choice. Maybe our
community is naturally more familiar with these formats due to the fact that virtualization is our daily business
in computational mechanics. Having nowadays the meeting online gives us additional degrees of freedom, reduces
efforts and we can reach more people easily. This experience will help us to develop creative formats for the future.

On 11 December 2020, GACM will hold its regular general assembly including elections — of course online. Thus,
we will continue with our efforts for science and research as well as service to the community. About other events
and the accompanying formats, members should consult the according web pages for an update.

Looking forward towards the upcoming scientific events and stay healthy. I remain with my best regards

Michael Kaliske, President of GACM
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1 Motivation

In this paper we present the objectives regarding
multi-X liver modelling of the recently DFG-funded re-
search unit QuaLiPerF (Quantifying Liver Perfusion-
Function Relationship in Complex Resection — A Sys-
tems Medicine Approach). The aim of the research
unit (RU) is to elucidate the interactions between the
changes in blood flow in the liver, also called perfusion,
when normalized on liver volume, and the metabolic
function of the liver. It will be investigated how this
function-perfusion interaction will be influenced by a
liver resection operation and how this knowledge can
be used in the clinical practise. On this basis, a model
of the perfusion of the liver and its function is to be
developed, which in the long term will make it possible
to better predict liver function and regeneration after
surgery and thus minimize the risk of liver failure, see
Figure 1. The challenge of modelling biological systems
is that they are by nature highly complex and often
difficult to understand. Two main reasons are that
biological systems

i) are developed in an evolutionary process in contrast
to deliberate design on a white-board, and that

ii) they are inherently multiscale and consist of special-
ized cells that form tissues capable of performing
multiple functions.

Thus, multiscale modelling including evolutionary
optimisation can contribute to a better understanding
of the biology underlying these complex systems.

el

The simulation can potentially support clinical
decision-making based on predictions obtained as
simulation output.

Two scenarios are clinically important: to predict
the progression of liver disease with and without a
given treatment, and to predict the outcome after ma-
jor removal of liver mass as needed in case of hepatic
malignancies. The outcome is dependent on the indi-
vidual risk of liver failure and the putative course of
liver regeneration which is related to the planned type
and extent of liver resection and the severity of an even-
tually underlying disease of the liver, such as steatosis,
fibrosis or even cirrhosis and the overall condition of
the patient. Thus, the liver is an ideal showcase for
complex biological systems.

Figure 1: Surgeon’s view on an extended liver resection
in human.
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2 The Perfusion-Function Interaction

The term “perfusion” refers in general to the passage of
blood through the circulatory system to an organ with
its capillary bed. Perfusion of the liver is ensured via a
dual supply: the portal vein supplying the liver with
nutrient-rich blood from the intestine and the hepatic
artery, supplying the liver with oxygen-rich blood from
the lung. Venous drainage is ensured via the hepatic
veins. The main liver cells, called hepatocytes, located
along the capillaries, called sinusoids, are supplied with
nutrients and oxygen via the blood flow. The liver is
the metabolic hub of the body playing a central role in
detoxifying substances such as drugs, and metabolism
of glucose, amino acids and fats. The term “function’
refers to these metabolic processes in the liver cells, e.g.,
glucose metabolism, fat metabolism or detoxification.

9

Due to the blood pressure gradient in the organ in
combination with cells functioning as sources or sinks,
substance gradients are established within the tissue.
These gradients and especially the local concentration
in the tissue are important factors determining cellu-
lar function. The cells in the tissue are specialized
to perform certain tasks depending on the local sub-
stance concentrations and thus on their position in the
gradient. The combination of substance concentration
and cell specialization yields complex perfusion-function
interactions. In the liver tissue, as an example, a gra-
dient exists in the glucose metabolism with different
cell functions depending on the location in the tissue
(either glucose producing or glucose consuming). This
cell-dependent function can be modulated based on the
actual glucose (and other metabolites and hormones)
gradients throughout the liver tissue. Perfusion of the
tissue is therefore an important driver of organ function.

3 Multiscale Modelling of the Liver

In order to model the liver mathematically, it can be
divided into three scales, cf. Figure 2:

i) organ scale: The liver consists of a blood-supplying
and blood-draining vascular perfusion system,
which is organized hierarchically and composed of
a coarse and fine network of hepatic vessels (~1-10
mm). The supplying system provides the liver
with oxygen-rich (via hepatic artery) and nutrient-
rich (via portal vein) blood, whereas the draining
system disposes of waste products.

lobule scale: The lobular units (~1-1.5 mm) of
the liver (metabolic unit) connect the supplying
and draining systems. Arterial and venous blood
from the supplying system is mixed, guided along
columns (sinusoids) of hepatocytes (liver cells), and
removed through the central vein into the draining
system. The interaction between mixed blood and
hepatocytes forms the functional unit of the liver.

ii)

QualiPerF - Multi-X Liver Modelling

iii) cell scale: The hepatocytes (~10-30 pm) ingest
oxygen and nutrients and deplete waste products.
They are responsible for detoxification, protein-
synthesis and metabolic homeostasis.

A fourth scale not directly related to the liver but
relevant for the perfusion input and output is required:
The whole-body scale, which embeds the liver into the
systemic circulation of the whole-body.

To capture the organ physiology and interaction in-
cluding the hepatic metabolism, a multiscale approach
is required. Thus, detailed mathematical models on
the different scales and an efficient modelling coupling
are essential. In order to map the complex biological
interactions and constraints, physiological data are nec-
essary, which are integrated into the models via data
integration methods.

lobule scale
~1,5mm

organ scale
~15cm

cell scale
~30um

Figure 2: Different size scales of the human liver.

3.1 Modelling Approach on Organ Scale

The first one of maybe four branching levels of the vas-
cular architecture of the human liver can be determined
by in vivo CT scans with a resolution of several hundred
micrometers. To determine the underlying branching
levels, optimization algorithms have been developed
that artificially generate the underlying levels starting
from the upper vessel structures, see e.g. KOPPL ET AL.
[29] or SCHWEN ET AL. [58]. Based on this geometrical
data, mostly 1D blood flow simulations are performed
to mimic e.g. the transient blood, nutrient and oxygen
distribution.

In addition, MRI, sonography and elastography are
available to obtain information on the upper liver scale
at organ level. For example, the bioMMeda research
group of Segers and Debbaut has developed a method to

winter 2020 7



QualLiPerF - Multi-X Liver Modelling

segment and analyze the morphological and geometric
data of liver-vascular trees based on imaging data such
as CT or MRI ([2], [4]). In addition to these structural
data, sonography will provide blood flow measurements
at the liver entrances and exits, while elastography will
provide data on the mechanical properties of the liver,
such as the stiffness of liver tissue.

3.2 Modelling Approach on Lobular Scale

A promising approach to model the complex biologi-
cal structure of the lobular tissue with its macroscopic
blood flow and nutrient transport is offered by the ho-
mogenization approach based on the Theory of Porous
Media (TPM), cf. EHLERS [15] and DE BOER [5]. To
describe the hepatic function-perfusion processes in the
liver lobules, RICKEN ET AL. [53, 51, 50] developed a
multicomponent, poro-elastic multiscale and multiphase
model based on the TPM. The total body ¢ consists of
three phases ¢®, namely the healthy liver tissue gas, fat
tissue T and blood . Since the model also takes into
account the description of solute components respon-
sible for the metabolic processes on the cellular scale,
the extended Theory of Porous Media (eTPM) can be
used according to RICKEN ET AL. [52], where the body
@ consists of carrier phases p® and the microscopic
substances ¢®°:

K
o= o™=

a=1

K v—1
> [Z(wﬂ) + ¢ (1)

a=1 La=1

To account for the growth or regression of fat tissue
p%, dependent on a biochemical activity, we utilize a
mathematical model developed by SCHLEICHER ET AL.
[57]. It describes hepatic lipid dynamics to simulate
the development of fatty acids in hepatocytes. The
model includes fatty acid uptake, lipid oxidation and
lipid export.

growth configuration

FSe
actual

configuration

Fge
reference

configuration

Figure 3:
DRIGUEZ[54].

Growth approach according to RoO-

The resulting tissue growth is implemented using a
multiplicative split of the deformation gradient Fg into
an elastic part Fg, and a growth part Fg, according to
RODRIGUEZ [54], cf. Figure 3, with

Fg = Fg.Fgg. (2)

This leads to the growth part of the deformation gradi-
ent using the multiplicative split in combination with
the multiphase theory, cf. WERNER [61], with

FSg = (JSg)l/S
(3)
Jgg = exp (fatat).

Evaluating the balance of momentum for the fluid, the
seepage velocity n¥ wpg is determined with

F

n" wpg = K [-grad A], (4)
cf. PIERCE ET AL. [43], wherein Ky with
F\2p-1 n¥ m q\ f*
Kp = (n")"Rp = kos ( S) M,
1-nyq
()

M* =rI+ (1-3x) M
Iy

is a positive definite material parameter tensor repre-
senting the intrinsic hydraulic resistance of the cartilage
solid. In liver tissue, the permeability depends on the
deformation and is characterized using the initial Darcy
permeability kgg [m4/Ns] and m, a dimensionless mate-
rial parameter controlling the general isotropic deforma-
tion dependence of the permeability. Inclusion of the
volume fraction n¥ relates to the change of permeability
caused by the change of pore space, where n(S)S denotes
the reference solid volume fraction. The (spatial) struc-
tural tensor M is defined as M = a ® a wherein a
represents the preferred blood flow direction given by
the sinusoids. Beside the tensor of identity I, we use
to define the range of permeabilities resulting from ideal
alignment sinusoids (k = 0) to an isotropic distribution
of the sinusoids (x = 1/3). This approach enables the
detection of blood flow distribution in segmented groups
of liver lobules, cf. Fig. 4.

4
SR

KN

i

high

Figure 4: Segmentation, meshing and simulation of hep-
atic blood flow using a group of liver lobules segmented
from a histological image.
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Solving the resulting degrees of freedom set R remains
with

(6)

R = [us, p'®, nS, nT, uo‘ﬁ],

For the numerical treatment, weak formulations of the
governing equations based on the balance relations are
formed within the framework of a standard GALERKIN
procedure as evaluated e.g. in WERNER [61]:

o Balance of momentum for the mixture:

/{T grad dug} dv = / {tgdug} da

OBg

(7

« Balance of mass for the mixture:

/ { div(nf wpg) +divxf-—p TR } opfRdv =0 (8)

Bs

o« Balances of mass for the solid tissue and the fat
tissue:

/ {(ns)’s 608 + 0% tr Dg 5ns} dv=20 (9)

Bs

5T
/ {(nT)'S ont + nTtrDgon® - —5nT} dv=20
Bg a

(10)

o Balance of mass for the solutes in the solid tissue:

{05 @ ou5? 4 e (857
Bs

+n cSﬁDS 16458 -

558
5usﬁ} dv=0 (11)

mol

e Balance of mass for the solutes in the fluid phase:

/ [0 (F9) 60 4 divipgs + <7 (") 67
Bs
F F IB F
+n C’BDS | YT a—, gy ﬁ}dv—O (12)

mol

The results in Figure 5 illustrate i) a group of healthy
liver lobules (left) and ii) an outflow obstruction in one
lobule with the respective inflow (red) and outflow (blue)
boundary conditions (right). The resulting change in
perfusion alters the function of the liver cells and thus
the accumulation of fat represented by a change in
volume fraction of fat tissue nT, cf. Figure 5 b).

QualiPerF - Multi-X Liver Modelling

inflow
outflow

IS
low n'

high

low i high

Figure 5: a) boundary value problem representing a
healthy group of lobules on the left and an obstructed
outflow on the right, b) spatial distribution of fat volume
fraction nT, cf. LAMBERS ET AL. [35].

3.3 Modelling Approach on Cellular Scale

For modelling the hepatic function on the cellular scale,
the most important processes are metabolism (syn-
thesis, degradation, and transformation of biological
molecules), and signal transduction (processing and
transfer of information based on biological molecules).
The objective of metabolic modelling is to understand
how metabolites are interconverted and to determine
the rates at which these transformations take place in
the cell. Main building blocks of such metabolic models
are metabolites (and proteins), the metabolic reactions
catalyzing the conversion of these metabolites, and the
genes which encode the reactions. To model metabolism,
the two main approaches are: (i) steady-state-based
methods, the most popular being Flux Balance Analy-
sis [40], and (ii) dynamic approaches based on ordinary
differential equations (ODE).

A global view of the metabolic capabilities of a cell
can be obtained via genome-scale metabolic models
(GEMSs), consisting of a comprehensive collection of
metabolites, reactions and genes of a given cell. GEMs
allow to analyze the flow of metabolites through the
network using flux balance analysis (FBA) and similar
algorithms. Multiple GEMs of the liver exist [17, 22, 1,
38] and have been applied to study central metabolic
functions of the liver [17] or the effects of deletions of sin-
gle enzymes [41]. To model the metabolism dynamically,
kinetic pathway models based on ordinary differential
equations (ODE) are used. This approach focuses on
specific metabolic functions and pathways by means of
detailed mathematical description of the involved cellu-
lar processes and molecular players, cf. Figure 6. These
ODE models allow to simulate the time evolution of
the system, providing a dynamic understanding of the

winter 2020 9
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Figure 6: Metabolic model of hepatic glucose metabolism, KOENIG [28], consisting of metabolites and reactions

which catalyze the conversions.

involved processes. Kinetic pathway models of central
liver functions have been developed, e.g., a minimal
model of lipid metabolism in steatosis development [56]
or models for the detoxification of substances by the
liver such as paracetamol [49]. We developed detailed
kinetic models of human hepatic glucose homeosta-
sis [25, 26] providing insights into the switch between
glucose production and utilization by the liver depend-
ing on hormonal regulation by insulin and glucagon.
Recently, this kinetic model was extended substantially
to cover the central carbon metabolism of the liver
(HepatoKinl) [4]. To describe signal transduction, the
two main approaches are boolean networks and ODE
models. The main goal hereby is to understand how

external signals (often hormones) are transduced in
changes in cellular state and behavior. Main building
blocks in signalling models are (i) changes of activity of
enzymes via protein modifications such as phosphoryla-
tion; (ii) complex formation of signalling molecules; (iii)
changes in transcription (with subsequent changes in
proteins). A variety of mathematical models of hepatic
signaling processes were developed, using ordinary dif-
ferential equations (ODEs) or boolean approaches. E.g.,
signalling models exist for the origin of zonation pat-
terns by the Wnt/S-catenin signaling pathway [27] or
the link between hepatic metabolism and the circadian
clock [62].

winter 2020



a) Assessment of microcirculation in a steatotic rat liver.
Note the difference in sinusoidal diameter. A Sensor on
hepatic surface. B Hepatic lobule: white arrow points
to compressed sinusoid, black arrow to dilated sinusoid,
yellow to fat-laden hepatocyte.

QualiPerF - Multi-X Liver Modelling

b) Assessment of microcirculation using orthogonal polar-
ization spectroscopy before (image on left side) and after
70% partial hepatectomy (image on right side). Note the
difference in sinusoidal diameter.

Figure 7: Assessment of microcirculation.

For a recent review of hepatic models of metabolism
and signalling relevant in the context of liver surgery,
we refer to [9].

4 Data-integrated Modelling

The importance of data in simulation science has in-
creased in recent years. The realistic simulation of
physiologic processes requires a detailed knowledge of
the underlying processes and the impact of changed
simulation boundaries. Models take initial values for
certain physical parameters such as initial concentra-
tions of metabolites, blood pressure or fat accumulation,
the variance of which can lead to a large deviation of
model predictions from the measured biological pro-
cess. Furthermore, the models must be validated in
order to verify their use for experimental and clinical
applications.

In liver modelling, perfusion data as well as the spatial
distribution of zonated processes in liver lobules and
cells are important inputs for model parameterization
and validation.

4.1 Perfusion Data

Hepatic perfusion is distributed heterogeneously
throughout the liver under normal conditions and even
more in case of focal hepatic tumors and after hepatic
surgery as well as in global disease states such as hepatic
steatosis (fatty liver disease).

A liver tumor may lead to the compression of larger
vessels leading to compromised hepatic perfusion on
the organ scale. Liver resection, the removal of hepatic
parenchyma together with the corresponding vascular
bed, leads to portal hypertension and portal hyperper-
fusion of the remnant organ. Hyperperfusion causes
dilation of the majority of sinusoids and compression of
the remaining ones, leading to heterogeneous perfusion
of the remnant liver on the lobular scale.

Steatosis, the accumulation of fat droplets in hepa-

winter 2020

tocytes, is also causing perfusion irregularities on the
lobular scale. The fat droplets are causing compres-
sion of the majority of hepatic sinusoids on the one
hand, and, on the other hand, dilation of the remaining
ones. Both together lead to inhomogeneous perfusion
of the organ and compromise hepatic perfusion and
subsequently metabolic function.

Therefore, global as well as spatially resolved assess-
ment of hepatic perfusion on the organ scale but also
on the microscopical scale is needed. Global hepatic
perfusion is assessed by determination of hepatic hemo-
dynamics: assessment of portal pressure (cm HoO) as
well as hepatic arterial blood flow, portal flow velocity
(m/s) and flow rate (ml/s). Spatially resolved assess-
ment of hepatic perfusion on the organ scale is based
on imaging technologies such as CT and MRI. However,
currently only a low spatial resolution is achieved.

In contrast, determination of hepatic microcircula-
tion is limited to the visualization and quantification
of hepatic perfusion in single hepatic lobules using e.g.
orthogonal polarization spectroscopy, cf. Figure 7. As-
sessment of the perfusion heterogeneity requires multi-
ple measurements on selected single spots of the liver
surface. Here, parameters such as the relative percent-
age of perfused hepatic sinusoids and the sinusoidal
blood flow can be determined. These parameters can
be determined under different experimental and clinical
conditions and are needed as input data for modelling.

4.2 Zonation Data

In the liver, metabolic functions are also distributed
heterogeneously in the tissue. E.g., gluconeogenesis
(glucose production) is predominantly executed by hep-
atocytes surrounding the regions of the portal vein
(periportal), while glycolysis (glucose consumption) is
predominantly executed by hepatocytes surrounding the
central vein (pericentral). This functional heterogene-
ity was termed metabolic zonation and was attributed
to blood-born nutrient, hormone, and morphogen gra-
dients, cf.  JUNGERMANN AND Katz [23]. These
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gradients form in the blood streaming along the hepatic
sinusoids, the most terminal branches of the portal vein
at the entry, and the most terminal branches of the
central vein at the exit site of the sinusoid. Likewise,
adhesion proteins involved in the formation of cell-cell
contacts, which are necessary for the proper epithelial
organization of the hepatic parenchyma, are distributed
zonally. These proteins, comprising cadherins and oth-
ers, cf. Figure 8, determine the epithelial orientation of
the hepatocyte and thus contribute to the functional
features of the hepatocyte. Impairment of cell-cell con-
tacts in liver diseases like non-alcoholic steatohepatitis
abrogates the zonal distribution of metabolic functions
indicating a structure-function relationship between ad-
hesion proteins and metabolic regulation, cf. HEMPEL
[19].

Figure 8: Zonation of adhesion proteins in the liver. E-
cadherin (left, yellow) is expressed in periportal hep-
atocytes, while N-cadherin (left, green) is expressed
pan-parenchymally. Under pathological conditions like
fatty liver disease, the zonal pattern of adhesion pro-
teins is abrogated (right, black “holes” represent lipid
droplets).

Carbohydrate metabolism in hepatocytes is regulated
under physiological conditions by the glucoregulatory
hormones insulin and glucagon. Isolated hepatocytes
in cell culture respond to insulin and glucagon with glu-
cose utilization and production, respectively, which in
the intact parenchyma is a predominant feature of peri-
central and periportal subpopulations of hepatocytes,
cf. CHRIST [8]. This indicates that the specification of
hepatocytes might be independent of their position in
the sinusoid per se. Moreover, the hepatocyte metabolic
response is dynamic, which corroborates that blood-
born gradients specify hepatocyte functions rather than
their sinusoidal positioning. It is self-evident that gra-
dient formation in the sinusoidal blood stream might
change with modifications in perfusion conditions. How-
ever, the biological processes coupling perfusion and
metabolism are unknown so far. Hence, it would be
feasible to assume a quantitative relationship between
the two, implying that perfusion changes dynamically
impact on metabolic changes, causing a proportional
response. Integration of perfusion and metabolism in
computational simulations might elucidate how these
are connected. In addition, identification of biolog-

ical pathways involved might also shed light on the
molecular mechanisms translating extracellular perfu-
sion changes into an adequate metabolic response by the
hepatocyte. Best candidates to achieve this coupling
might be molecular mechanosensors on the hepatocyte

surface including adhesion proteins like cadherins.

4.3 MRI Data

Magnetic resonance imaging (MRI) provides spatially
resolved, multi-parametric quantitative in vivo infor-
mation of the liver. This ranges from anatomical in-
formation, like liver volume [44, 10] or diet-based inho-
mogeneous fat enrichment in the tissue [12, 32, 3], to
functional assessments using contrast agent excretion or
direct flow [7] and perfusion MRI measurements [46, 6].
Differences between various experimental conditions in
animal models can be analysed in detail. The main ad-
vantages of MRI is its non-invasiveness and scalability
between small animal models (rodents) and humans [13,
21]. Once an MRI method is established either clini-
cally or pre-clinically in an animal model, in most cases
the MRI method (or sequence) can be quickly trans-
lated to the respective other scale. MRI is also able
to connect spatial scales as it can reach all the way
from a whole human body over rodent body down to
organs and further into highly resolved structural and
functional data of organ tissue. The current limitations
are typically two orders of magnitude above histolog-
ical cellular resolution but can sometimes be pushed
for special cases and methods [13]. MRI can also offer
some insights into tissue microstructure by indirectly
measuring tissue parameters, which are linked to the
microstructure, at a lower spatial resolution.

Figure 9: a) Anatomical T2-weighted image of a rat
with 60% portal vein ligation, which allows normal
flow to the right median and caudate lobe and cuts
off the portal blood flow to the left and inferior right
lobes. Hyper- (lighter grey) and hypo-perfused (darker
grey) areas in the different portal supply zones are
clearly visible in the anatomical image. The letter
abbreviations identify the liver lobes: right median
lobe (RML), right lobe (RL), left median lobe (LML),
left lateral lobe (LLL), upper caudate lobe (CL). b)
Position-matched perfusion map derived from a FAIR
Spinecho EPI measurement for comparison (color bar:
0-700 ml per 100 g tissue per min). The sharp boundary
between hyper perfused (in green and red color) and
hypo perfused (mostly blue) liver areas is clearly visible
in the quantitative perfusion map. Both images were
acquired on a 9.4 T small animal MR system.

Two prominent examples are water diffusion restricted
by cell boundaries and tissue perfusion [59, 36, 14],
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which both gain information on structures below the
current direct spatial resolving power of MRI.

The obtained data give an insight into the systemic
in vivo adaptations after different surgical interventions,
e.g., portal vein ligation or the regenerative response
of the remnant liver after resection, cf. Figure 9. Fur-
thermore, with help of the MRI data a comparison of
predicted temporal changes provided by the mathemat-
ical model is possible.

4.4 Transcriptome Data

4941

8233

M Elevated in liver

Ml Elevated in other but expressed in liver

[ Low tissue specificity but expressed in liver
[ Not detected in liver

.Nut detected in any tissue

Figure 10: The distribution of all protein-coding genes
across the five categories based on transcript specificity
in the liver as well as in all other tissues.

The number of genes in the human genome is not en-
tirely determined yet because the number of different
isoforms and also the function of numerous transcripts
remains unclear. This is especially true for non-coding
RNA. The number of protein-coding genes is better
known, but varies by 1,400 questionable genes[42, 18,
11, 39]. Transcriptome analysis shows that 72% of all
human proteins are expressed in the liver and 936 of
these genes show an elevated expression in the liver
compared to other tissue types, cf. Figure 10.

Although only a fraction of liver-specific ncRNAs
are known, here we summarize important examples of
ncRNA participating in the pathogenesis of different
forms of liver disease and how they can be used as ther-
apeutic tools or targets for novel treatment paradigms,
following the suggestions of ROy ET AL. [55]. In pre-
vious works, we analyzed the number of differentially
expressed genes across several species and organs. These
plots summarize protein-coding genes and non-coding
RNA genes. A large number of genes being involved
in metabolic processes, inflammation and immune re-
sponse are differentially expressed during aging, which
we expect to see based on our experience of senescence
and inflammation in mouse liver [2].

Alterations in protein expression directly affect hep-
atic metabolism and consequently liver function.
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4.5 Data Integration and Uncertainty Quantifi-
cation

In order to build predictive models for the liver, expert
knowledge and experimental data have to be taken
into account. However, the integration of data into
quantitative and dynamic models on different scales
poses several challenges.

(i) First, we often face the sparse data setting
problem. Even if model equations can be defined, e.g.
for parts of the metabolic network, the data available for
model calibration do often not contain enough informa-
tion to estimate all model parameters uniquely [33, 47].
This is e.g. because only few components of the network
are quantified, which results in ill-posed optimization
problems [45]. Different approaches exist to deal with
this problem, including regularization techniques [33],
identifiability analyses [47, 20, 48] and Bayesian ap-
proaches [16, 24]. The latter generally allow for a con-
sistent tracking of uncertainty from variability in input
data via uncertainty in model parameters to confidence
bounds in model predictions, but are computationally
expensive.

(ii) Thus, computational costs pose a sec-
ond challenge for data integration. Sampling ap-
proaches, which allow to investigate uncertainty in
terms of probability distributions in a Bayesian setting,
have to be optimized and adapted to be applicable to
larger models. This can be achieved in different ways, in-
cluding efficient sampling schemes [30], likelihood-based
approaches [31] and fast forward simulation times. The
latter can be reached by model reduction techniques,
e.g. surrogate models via machine learning techniques.
This challenge applies to metabolic models and models
on the organ scale that are described with ordinary
differential equations, but particularly to simulation-
intensive models which include spatial resolution such
as metabolic zonation or anisotropic blood flow on the
lobule scale.

(iii) Standard methodology for the generation
of patient-specific models is missing. The integra-
tion of blood profiles or liver function tests of individual
patients into models requires the development of suit-
able methodology [60]. Moreover, since post-operative
regeneration courses and the risk of liver failure also
depend on factors such as gender, age, weight or co-
morbidities, the integration of these factors into risk
assessment is also important.

5 Machine Learning

The simulation of hepatic processes using high-fidelity
models requires computational resources to achieve a
real-time analysis, e.g., a quick examination of the ef-
fects of parameter changes on model outputs. Therefore,
artificial neural networks (ANNSs) are developed and
can be used for model order reduction. To insert a huge
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Figure 11: a) Comparison of fat volume fraction calculated using numerical simulation or ANNs. b) Relation
between simulated and predicted results of fat volume fraction, c¢f. LAMBERS ET AL. [34].

amount of experimental and clinical data into the nu-
merical model, ANNs will be trained on a huge amount
of data and implemented in the model for the calcula-
tion of the rates p% in each Gauss-point. As a showcase,
we developed a model-free approach to predicting fat
volume fraction in the liver lobule at each node in the
finite element mesh using ANNs, where sensible hyper-
parameters (number of layers, number of neurons, loss
function, activations,...) were determined using grid
search (cf. MIELKE & RICKEN [37] and LAMBERS ET
AL. [34]). The results of the spatial distribution of fat
volume fraction in the liver lobule in simulation and
using ANNs are shown in Figure 11 a). The predicted
results are comparable to the simulation results and
the relative error is < 1.2%. Figure 11 b) illustrates
the accuracy of the approximation by comparing the
results from simulation and ANN at one point in the
liver lobule. The difference between both results is ex-
tremely low and the approximation via ANNs fits the
ideal results for fat accumulation. The biggest error
occurs in the area of small fat accumulation, as the
amount of data provided here is significantly lower and
therefore less training data is available for this area.

6 Discussion and Conclusion

Understanding liver function requires a multiscale ap-
proach bringing together expertise from multiple fields.
Therefore, a close cooperation between research in the
field of live science, modelling, data integration and
the clinical studies will significantly improve the under-
standing of the complex function-perfusion relationship
necessary for the clinical application.

7 Acknowledgement

Funded by Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excel-
lence Strategy — EXC 2075 — 390740016.

This work was supported by the German Research
Foundation (DFG) within the Research Unit Pro-

gramme FOR 5151 "QuaLiPerF (Quantifying Liver
Perfusion—Function Relationship in Complex Resec-
tion—A Systems Medicine Approach)” by grant number
436883643. MK is supported by the Federal Ministry
of Education and Research (BMBF, Germany) within
the research network Systems Medicine of the Liver
(LiSyM, grant number 031L0054).

References

[1] R. Agren et al. “Identification of anticancer drugs
for hepatocellular carcinoma through personalized
genome-scale metabolic modeling.” In: Molecular
systems biology 10 (Mar. 2014), p. 721. 1sSSN: 1744-
4292. DOI: 10.1002/msb.145122.

[2] E. Barth et al. “Conserved aging-related signa-
tures of senescence and inflammation in different
tissues and species”. In: Aging (Albany NY) 11.19
(2019), p. 8556.

[3] J. Berglund et al. “Fat/water separation in
k-space with real-valued estimates and its combi-
nation with POCS”. en. In: Magn Reson Med 83.2
(Feb. 2020), pp. 653—661. 1SSN: 0740-3194, 1522-
2594. por: 10.1002/mrm . 27949. URL: https:
//onlinelibrary . wiley . com/doi/abs/10.
1002/mrm. 27949 (visited on 01/24,/2020).

[4] N.Berndt et al. “HEPATOKINT1 is a biochemistry-
based model of liver metabolism for applications
in medicine and pharmacology.” In: Nature Com-
munications 9 (1 June 2018), p. 2386. 1SSN: 2041-
1723. DOI: 10.1038/s41467-018-04720-9.

[5] R. de Boer. Theory of Porous Media — highlights
in the historical development and current state.
Berlin: Springer-Verlag, 2000.

[6] M Chouhan, R Ramasawmy, and A Campbell-
Washburn. “Measurement of bulk liver perfusion:
initial assessment of agreement between ASL and
phase-contrast MRI at 9.4T”. In: Proc Intl Soc
Mag Reson Med. 21 (2013), p. 2190.

winter 2020



[10]

[13]

winter 2020

M. D. Chouhan et al. “Use of Caval Subtraction
2D Phase-Contrast MR Imaging to Measure Total
Liver and Hepatic Arterial Blood Flow: Preclin-
ical Validation and Initial Clinical Translation”.
en. In: Radiology 280.3 (Sept. 2016), pp. 916—
923. 1sSN: 0033-8419, 1527-1315. poI: 10.1148/
radiol.2016151832. URL: http://pubs.rsna.
org/doi/10.1148/radiol.2016151832 (visited
on 01/24/2020).

B. Christ, I. Probst, and K. Jungermann. “An-
tagonistic regulation of the glucose/glucose 6-
phosphate cycle by insulin and glucagon in cul-
tured hepatocytes” In: The Biochemical journal
238.1 (1986), pp. 185-191. 1ssN: 0264-6021. DOI:
10.1042/1j2380185.

B. Christ et al. “Computational Modeling in Liver
Surgery.” In: Frontiers in Physiology 8 (2017),
p- 906. 1SSN: 1664-042X. DOI: 10.3389/fphys.
2017 .00906.

M. D. Cockman, D. A. Hayes, and B. R. Kuzmak.
“Motion suppression improves quantification of
rat liver volume in vivo by magnetic resonance
imaging”. en. In: Magn. Reson. Med. 30.3 (Sept.
1993), pp. 355-360. 1sSN: 07403194, 15222594. DOIL:
10.1002/mrm. 1910300313. URL: http://doi.
wiley.com/10.1002/mrm. 1910300313 (visited
on 01,/24/2020).

F. Cunningham et al. “Ensembl 2019”. In: Nucleic
acids research 47.D1 (2019), pp. D745-D751.

W. T. Dixon. “Simple proton spectroscopic imag-
ing.” en. In: Radiology 153.1 (Oct. 1984), pp. 189—
194. 1ssN: 0033-8419, 1527-1315. po1: 10.1148/
radiology.153.1.6089263. URL: http://pubs.
rsna.org/doi/10.1148/radiology . 153.1.
6089263 (visited on 01/24/2020).

B. Driehuys et al. “Small Animal Imaging with
Magnetic Resonance Microscopy”. en. In: ILAR
J 49.1 (Jan. 2008), pp. 35-53. 1sSN: 1084-2020.
DOI: 10.1093/ilar .49 .1.35. URL: https:
//academic .oup.com/ilarjournal/article-
lookup/doi/10.1093/ilar.49.1.35 (visited on
01,/24/2020).

G. Duhamel et al. “High-resolution mouse kidney
perfusion imaging by pseudo-continuous arterial
spin labeling at 11.75T: Mouse Kidney Perfusion
Measurement with pCASL”. en. In: Magn. Re-
son. Med. 71.3 (Mar. 2014), pp. 1186-1196. 1SSN:
07403194. poOI: 10.1002/mrm.24740. URL: http:
//doi.wiley.com/10.1002/mrm.24740 (visited
on 01,/24/2020).

W. Ehlers. “Foundations of multiphasic and
porous materials”. In: Porous Media. Springer,
2002, pp. 3-86.

A. Gelman et al. Bayesian data analysis. 2nd ed.
Texts in Statistical Science. Chapman & Hall,
CRC, 2004.

(17]

(18]

[19]

20]

21]

23]

[25]

[26]

QualiPerF - Multi-X Liver Modelling

C. Gille et al. “HepatoNetl: a comprehensive
metabolic reconstruction of the human hepato-
cyte for the analysis of liver physiology.” In: Molec-
ular Systems Biology 6 (Sept. 2010), p. 411. I1SSN:
1744-4292. po1: 10.1038/msb.2010.62.

J. Harrow et al. “GENCODE: the reference
human genome annotation for The ENCODE
Project” eng. In: Genome Res 22.9 (2012),
pp. 1760-1774. poI: 10.1101/gr . 135350 . 111.
URL: http://dx.doi.org/10.1101/gr.135350.
111.

M. Hempel et al. “Pathological implications of
cadherin zonation in mouse liver”. In: Cellular
and molecular life sciences : CMLS 72.13 (2015),
pp- 2599-2612. DOI: 10.1007/s00018-015-1861~-
y.

S. Hengl and C. Kreutz. “Data-based identifiabil-
ity analysis of non-linear dynamical models”. In:
Bioinformatics 23.19 (2007), pp. 2612-18.

C. Hoyer et al. “Advantages and Challenges of
Small Animal Magnetic Resonance Imaging as a
Translational Tool”. en. In: Neuropsychobiology
69.4 (2014), pp. 187-201. 1SsN: 0302-282X, 1423-
0224. por: 10.1159/000360859. URL: https :
//www.karger.com/Article/FullText/360859
(visited on 01/24/2020).

L. Jerby, T. Shlomi, and E. Ruppin. “Computa-
tional reconstruction of tissue-specific metabolic
models: application to human liver metabolism.”
In: Molecular systems biology 6 (Sept. 2010),
p- 401. 1SSN: 1744-4292. DOI: 10.1038/msb.2010.
56.

K. Jungermann and N. Katz. “Functional spe-
cialization of different hepatocyte populations”.
In: Physiological reviews 69.3 (1989), pp. 708-764.
ISSN: 0031-9333. pOI: 10.1152/physrev.1989.
69.3.708.

L. Kaderali et al. “CASPAR: a hierarchical
Bayesian approach to predict survival times in
cancer from gene expression data”. In: Bioinfor-
matics 22.12 (2006), pp. 1495-1502.

M. Kénig, S. Bulik, and H.-G. Holzhiitter. “Quan-
tifying the contribution of the liver to glucose
homeostasis: a detailed kinetic model of human
hepatic glucose metabolism.” In: PLoS computa-
tional biology 8 (6 2012), €1002577. 1SSN: 1553-
7358. DOI: 10.1371/journal.pcbi.1002577.

M. Koénig and H.-G. Holzhiitter. “Kinetic model-
ing of human hepatic glucose metabolism in type
2 diabetes mellitus predicts higher risk of hypo-
glycemic events in rigorous insulin therapy.” In:
The Journal of biological chemistry 287 (44 Oct.
2012), pp. 36978-36989. 1ssN: 1083-351X. DOI:
10.1074/jbc.M112.382069.




QualLiPerF - Multi-X Liver Modelling

[36]

Y. Kogan et al. “A new validated mathematical
model of the Wnt signalling pathway predicts ef-
fective combinational therapy by sFRP and Dkk”.
In: The Biochemical journal 444.1 (2012), pp. 115—
125. 1SSN: 0264-6021. poI: 10.1042/BJ20111887.

M. Konig. Ezecutable Simulation Model of the
Liver. Vol. 2. 2020. bo1: 10.1101/2020.01.04.
894873.

T. Koppl, E. Vidotto, and B. Wohlmuth. “A
3D-1D coupled blood flow and oxygen transport
model to generate microvascular networks”. In:
International Journal for Numerical Methods in
Biomedical Engineering (2020), e3386. 1SSN: 2040-
7947. DOT: \url{10.1002/cnm.3386%}.

A. Kramer, B. Calderhead, and N. Radde. “Hamil-
tonian Monte Carlo methods for efficient parame-
ter estimation in steady state dynamical systems”.
In: BMC bioinformatics 15 (2014), p. 253. DOI:
10.1186/1471-2105-15-253.

C. Kreutz et al. “Profile likelihood in systems
biology”. In: FEBS J 280 (2013), pp. 2564-2571.
DOI: 10.1111/febs.12276.

S. Krishan et al. “Non-invasive quantification of
hepatic steatosis in living, related liver donors
using dual-echo Dixon imaging and single-voxel
proton spectroscopy”. en. In: Clin Radiol 71.1
(Jan. 2016), pp. 58-63. 1ssN: 00099260. DOI: 10.
1016/3 . crad.2015.10.002. URL: https: //
linkinghub . elsevier . com/ retrieve / pii/
$000992601500389X (visited on 01/24/2020).

P. Kiigler, E. Gaubitzer, and S. Miiller. “Param-
eter identification for chemical reaction systems
using sparsity enforcing regularization: A case
study for the chlorite-lodide reaction”. In: J. Phys.
Chem. 113.12 (2009), pp. 2775-2785.

L. Lambers, T. Ricken, and M. Konig. “Model
Order Reduction (MOR) of Function-Perfusion-
Growth Simulation in the Human Fatty Liver
via Artificial Neural Network (ANN)”. In: PAMM
19.1 (2019), €201900429. poI1: 10 . 1002/ pamm .
201900429. eprint: https : //onlinelibrary .
wiley.com/doi/pdf/10.1002/pamm.201900429.
URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/pamm.201900429.

L. Lambers, N. Waschinsky, and T. Ricken.
“On a Multi-Scale and Multi-Phase Model of
Paracetamol-induced Hepatotoxicity for Human
Liver”. In: PAMM 18.1 (2018), €201800454. 1SSN:
1617-7061. pOI: 10.1002/pamm.201800454.

P. Martirosian et al. “Spatial-temporal perfusion
patterns of the human liver assessed by pseudo-
continuous arterial spin labeling MRI”. en. In: Z
Med Phys 29.2 (May 2019), pp. 173-183. ISSN:
09393889. pDOI: 10.1016/ j . zemedi . 2018.08.
004. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0939388918300618 (visited on
01/27/2020).

[37]

(38]

(39]

(40]

(41]

[42]

(43]

(44]

(45]

(46]

(47]

A. Mielke and T. Ricken. “Evaluating Artificial
Neural Networks and Quantum Computing for
Mechanics”. In: PAMM 19.1 (2019).

A. Naik, D. Rozman, and A. Beli¢. “SteatoNet:
the first integrated human metabolic model
with multi-layered regulation to investigate liver-
associated pathologies.” In: PLoS Computational
Biology 10 (12 Dec. 2014), €1003993. 1SSN: 1553-
7358. DOI: 10.1371/journal.pcbi.1003993.

N. A. O’Leary et al. “Reference sequence (RefSeq)
database at NCBI: current status, taxonomic ex-
pansion, and functional annotation”. In: Nucleic
acids research 44.D1 (2016), pp. D733-D745.

J. D. Orth, I. Thiele, and B. @. Palsson. “What is
flux balance analysis?” In: Nature biotechnology
28.3 (2010), pp. 245-248. DOI: 10 .1038/nbt .
1614.

R. Pagliarini et al. “In Silico Modeling of Liver
Metabolism in a Human Disease Reveals a Key
Enzyme for Histidine and Histamine Homeostasis.”
In: Cell reports 15 (10 June 2016), pp. 2292-2300.
ISSN: 2211-1247. DOT: 10.1016/j.celrep.2016.
05.014.

M. Pertea et al. “CHESS: a new human gene cat-
alog curated from thousands of large-scale RNA
sequencing experiments reveals extensive tran-
scriptional noise”. In: Genome biology 19.1 (2018),
pp. 1-14.

D. M. Pierce, T. Ricken, and G. A. Holzapfel.
“Modeling sample/patient—specific structural and
diffusional responses of cartilage using DT-MRI".
In: International Journal for Numerical Methods
in Biomedical Engineering 29.8 (2013), pp. 807—
821. 1SSN: 2040-7947.

Y. Qin et al. “Determination of liver volume in
vivo in rats using MRI”. en. In: Fur J Radiol 11.3
(Nov. 1990), pp. 191-195. 1sSN: 0720048X. DOI:
10.1016/0720-048X(90) 90054-F. URL: https:
//linkinghub.elsevier.com/retrieve/pii/
0720048X9090054F (visited on 01/24,/2020).

N. Radde and J. Offtermatt. “Convergence of pos-
teriors for structurally non-identifiable problems
using results from the theory of inverse problems”.
In: J Inverse 1ll-Pose P 22.2 (2013), pp. 251-76.
DOI: 10.1515/jip-2012-0057.

R. Ramasawmy et al. “Hepatic arterial spin la-
belling MRI: an initial evaluation in mice”. en.
In: NMR Biomed. 28.2 (Feb. 2015), pp. 272-280.
ISSN: 09523480. DOI: 10.1002/nbm. 3251. URL:
http://doi.wiley.com/10.1002/nbm. 3251
(visited on 01,/27/2020).

A. Raue et al. “Comparison of approaches for
parameter identifiability analysis of biological sys-
tems”. In: Bioinformatics 30.10 (2014), pp. 1440—
1448. DOTI: 10.1093/bioinformatics/btu006.

winter 2020



[49]

[50]

[51]

[52]

[54]

[55]

winter 2020

A. Raue et al. “Structural and practical identifi-
ability anaylsis of partially observed dynamical
models by exploiting the profile likelihood”. In:
Bioinformatics 25.15 (2009), pp. 1923-1929.

D. Reddyhoff et al. “Timescale analysis of a math-
ematical model of acetaminophen metabolism and
toxicity.” In: Journal of theoretical biology 386
(Dec. 2015), pp. 132-146. 1ssN: 1095-8541. DOTI:
10.1016/j.jtbi.2015.08.021.

T. Ricken and L. Lambers. “On computational
approaches of liver lobule function and perfusion
simulation”. In: GAMM-Mitteilungen 9.3 (2019),
€201900016. 1sSN: 0936-7195. DOI: 10.1002/gamm.
201900016.

T. Ricken, N. Waschinsky, and D. Werner. “Sim-
ulation of Steatosis Zonation in Liver Lobule—
A Continuum Mechanical Bi-Scale, Tri-Phasic,
Multi-Component Approach” In: Biomedical
Technology. Ed. by P. Wriggers and T. Lenarz.
Vol. 84. Lecture Notes in Applied and Computa-
tional Mechanics. Cham: Springer International
Publishing, 2018, pp. 15-33. 1SBN: 978-3-319-
59547-4. pDo1: 10.1007/978-3-319-59548-1_2.

T. Ricken et al. “Concentration driven phase tran-
sitions in multiphase porous media with applica-
tion to methane oxidation in landfill cover lay-
ers”. In: ZAMM-Journal of Applied Mathematics
and Mechanics/Zeitschrift fir Angewandte Math-
ematik und Mechanik 94.7 (2014), pp. 609-622.

T Ricken et al. “Modeling function-perfusion be-
havior in liver lobules including tissue, blood,
glucose, lactate and glycogen by use of a cou-
pled two-scale PDE-ODE approach.” In: Biome-
chanics and Modeling in Mechanobiology 14 (3
June 2015), pp. 515-536. 1ssN: 1617-7940. poI:
10.1007/s10237-014-0619-z.

E. K. Rodriguez, A. Hoger, and A. D. McCulloch.
“Stress-dependent finite growth in soft elastic tis-
sues”. In: Journal of Biomechanics 27 (4) (1994),
pp. 455-467. 1sSN: 0021-9290.

S. Roy et al. “A general overview on non-
coding RNA-based diagnostic and therapeutic
approaches for liver diseases” In: Frontiers in
pharmacology 9 (2018), p. 805.

J. Schleicher et al. “A theoretical study of lipid
accumulation in the liver-implications for non-
alcoholic fatty liver disease.” In: Biochimica et
Biophysica Acta 1841 (1 Jan. 2014), pp. 62-609.
1ssN: 0006-3002. DO1: 10.1016/j .bbalip.2013.
08.016.

J. Schleicher et al. “Zonation of hepatic fat accu-
mulation: insights from mathematical modelling
of nutrient gradients and fatty acid uptake.” In:
Journal of the Royal Society, Interface 14 (133
Aug. 2017). 1SSN: 1742-5662. DOI: 10.1098/rsif.
2017.0443.

[58]

[59]

[60]

(61]

(62]

QualiPerF - Multi-X Liver Modelling

L. O. Schwen et al. “Algorithmically generated
rodent hepatic vascular trees in arbitrary detail”.
In: Journal of Theoretical Biology 365.0 (2015),
pp. 289-300. 1ssN: 0022-5193. poI: \url{10 .
1016/j.jtbi.2014.10.026}.

C. H. Thng. “Perfusion magnetic resonance imag-
ing of the liver”. en. In: World J Gastroenterol
16.13 (2010), p. 1598. 1sSN: 1007-9327. DOI: 10.
3748 /wjg.v16.113.1598. URL: http://www.
wjgnet.com/1007-9327/full/v16/i13/1598.
htm (visited on 01,/24/2020).

B. Verma, P. Subramaniam, and R. Vadigepalli.
“Model-based virtual patient analysis of human
liver regeneration predicts critical perioperative
factors controlling the dynamic mode of response
to resection”. In: BMC' Syst Biol 13.9 (2019). DOIL:
10.1186/s12918-019-0678~y.

D. Werner. Two Scale Multi-component and Multi-
phase Model for the Numerical Simulation of
Growth Processes in Saturated Porous Media un-
der Consideration of Bio-chemical Processes -
at the Example of the Human Liver. 1. Auflage.
Berichte aus der Biomechanik. Aachen: Shaker,
2017. 1SBN: 3844054626.

A. Woller et al. “A Mathematical Model of the
Liver Circadian Clock Linking Feeding and Fast-
ing Cycles to Clock Function”. In: Cell reports
17.4 (2016), pp. 1087-1097. por: 10.1016/j .
celrep.2016.09.060.




Simulating Clinically Relevant Cases in Cardiology via Numerical Tools

Simulating Clinically Relevant Cases in Cardiology

via Numerical Tools

by Baris Cansiz, Yongjae Lee, Lucas A. Woodworth & Michael Kaliske

Institute for Structural Analysis, Technische Universitdt Dresden, Germany

1 Introduction

The initial beat of the human heart occurs in the early stages
of embryo development and continues ceaselessly untill death
of the body. The heart is the core unit of the cardiovascular
system whose task is to sustain a continuous blood circulation
throughout the body, thereby nourishing every single cell with
essential substrates, enabling waste excretion and keeping the
whole system functioning under various conditions (e.g. rest-
ing, training, pregnancy). Hence, any dysfunction in the cir-
culation system might lead to critical conditions such as loss
of standard of living, stroke or even sudden death. Accord-
ing to the World Health Organization, 17.9 million people die
from cardiovascular diseases (CVDs) in the world each year,
which corresponds to 31% of all global deaths. Apart from
deep impact on human life, CVDs cause high a financial bur-
den for the society resulting from direct costs, e.g. medical
care, and indirect costs, e.g. labour force loss, which was
estimated around $ 555 billion in 2015 in the United States.
Unfortunately, mortality and economical side effects of CVDs
are projected to increase over the next 20 years [2].

These harsh facts canalized scientists to understand how a
healthy heart functions and how heart diseases progress with
the aim to achieve robust diagnostic tools and efficient treat-
ment strategies. A huge amount of research groups perform
clinical experiments and trials on humans and animals in or-
der to deepen our understanding of the heart and how CVDs
develop. Undoubtedly, such studies greatly benefit the field
of cardiology. However, the requirement of high budgets,
long follow-up durations, trial and error procedures and ethic
approvals limit the progress [9, 15]. In addition, the repro-
ducibility and generalization of experimental findings are an-
other critical issue. On the clinical side, one is able to assess
the current status of a patient’s cardiac function through non-
invasive techniques, e.g. computer tomography (CT), car-
diac magneto resonance imaging (cMRI), echocardiography
(echo), electrocardiogram (ECG), and invasive techniques,
e.g. blood tests, biopsy, catheterization. However, these di-
agnostic tools cannot provide a complete understanding of
the cardiac function and possible disease progression. One
of the demanding issues is the existence of unique properties
and conditions of each patient’s heart that makes it difficult to
establish a general consensus on diagnosis, possible disease
progression and treatment methodology.

On the other hand, it is a well known fact that the recog-
nition of a disease and its treatment technique for a specific
patient are deduced in the light of a physiologist’s experi-
ence that is naturally subjective to a certain extent and does

not necessarily guarantee the best outcome. It is speculated
that a large number of people are subjected to misdiagnosis,
causing serious health problems, deaths and additional costs
that could have been prevented [12]. Therefore, more effi-
cient diagnostic approaches pinpointing the cause of disease
and precise patient-specific treatment strategies are extremely
desirable in order to reduce the mortality and economical side
effects of heart diseases.

In this context, computing facilities along with advance-
ments in numerical modelling approaches for the heart pro-
vide a promising investigation opportunity. Thanks to numer-
ical developments, it will be feasible to virtually analyze a
patient’s heart, predict possible disease progression patterns
and provide information that is not possible to obtain through
medical monitoring tools alone, e.g. stress distribution in
the intact ventricle. It would be no surprise if the near fu-
ture would witness cardiologists who are educated with ba-
sic engineering knowledge and performing predictive patient-
specific simulations as a clinical routine before making a final
decision on a treatment methodology. Nevertheless, computa-
tional modelling of such a complex organ is not a straightfor-
ward task since various constituents (electrophysiology, con-
traction, boundary conditions, blood flow, valves etc.), which
regulate heart function, have to be considered.

In this contribution, we briefly introduce some important
aspects of our recently established finite element (FE)-based
numerical framework in the context of computational mod-
elling of the heart. Furthermore, we present some elaborate
numerical examples which demonstrate the usability of our
numerical framework for cases encountered in cardiology de-
partments of hospitals.
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o
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Figure 1: Rheology for the electro-visco-elastic response of
the myocardium.
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2 Excitation and contraction coupling in my-
ocardial tissue

The electromechanical state of the heart muscle, or in other
words, the myocardium is governed by the balance of lin-
ear momentum and a reaction-diffusion-type equation of ex-
citation either in the monodomain [10] or bidomain setting
[7, 8], depending on the nature of the problem. The cou-
pling between the mechanical and electrical fields is estab-
lished through relations at the constitutive level.

In order to achieve an extensive description of the active
myocardial behaviour, we developed a sophisticated rheol-
ogy considering orthotropic electro-visco-elastic aspects of
the myocardium. As a first step in the development of the
model, the myocardium is deemed as a passive material and a
rheological model that consists of two branches connected in
parallel is considered. One branch is related to the equilibrium
response through an elastic spring and the other branch repre-
sents the non-equilibrium response through a spring+dashpot
element. Regarding the orthotropic viscous properties of the
myocardial tissue, the non-equilibrium part of the free energy
function is additively decomposed into fibre, sheet and normal
directions and each orientation is associated with distinct ma-
terial parameters [6]. Furthermore, this rheology is furnished
with a contractile element only along the fibre direction in or-
der to describe the active tissue response, i.e. the influence
of the electrical excitation on the mechanical field, while the
material response along the sheet and normal directions is as-
sumed to be passive. The resulting setting can be considered
as an extension of the classical Hill model [13] to account for
the viscosity in the three-dimensional space which we name
as the modified Hill model [3], see Figure 1.

The model considers the multiplicative decomposition of
the total deformation gradient into an elastic part F'°, a vis-
cous part F'V and an active part F'*

F =F°F"F*“. (1

The viscous part of the deformation gradient embodies the
orthotropic viscous properties and the active part of the defor-
mation gradient manifests the contractile nature of the heart
tissue. Both of the sub-parts are prescribed according to the
orthotropic properties of the myocardium

F =1+ —-Dfy® fy
+(AY — 1)s50 ® 59 + (A} — 1)ng ® ny, 2
Fe :=1+()\?—1)f0®f0.

Herein, the viscous stretches Af, A\J and A7 and the active
stretch Af are associated with the fibre f, sheet sy and nor-
mal n directions that are assumed to be perpendicular to each
other in the reference state. This assumption further leads to
a multiplicative decomposition of the stretches without any
coupling between the directions A\ = AFAF A, As = ASA and
An = AZAY, where the superscript e designates the elastic part
of the stretch. The viscous stretches represent the deformation
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in the dashpot along three orthogonal directions governed by
the macroscopic deformation, while the active stretch repre-
sents the shortening of the myocardium along the fibre direc-
tion emerging from an alteration in the intracellular calcium
concentration which is formulated in terms of the transmem-
brane potential. Both stretches as well as the intracellular cal-
cium concentration are considered as internal variables in the
framework.

After determining the viscous and active parts of the
stretches, the elastic part of the deformation gradient can be
simply obtained through relation F° = F(F"F*)~. More-
over, in line with the rheological setting, the total free energy
function is additively decomposed into passive ¥P and visco-
active 1)”® parts

P(s; F,F°) = )P (s; F) + 9" (s; F°) 3)

with s = {f,, S0, no}. Note that this setting comprises the
advantages of both the additive split of the total stress and the
multiplicative decomposition of the total deformation gradi-
ent in the sense of Goktepe et al. [11].

When it comes to the modelling of cardiac electrophys-
iology at the material level, two essential approaches can
be mentioned: ionic and phenomenological models. The
ionic models represent a sophisticated description of the car-
diomyocytes by considering the local evolution of individual
ion species in line with experimental observations, e.g. Ten
Tusscher-Noble-Noble-Panfilov model [17]. These models
are useful when one needs to study the influence of a particu-
lar ion activity on cardiac electrophysiology, e.g. drug appli-
cation. However, a high number of evolution equations for ion
concentrations, ionic currents and gating variables requires a
demanding computational treatment. On the other hand, for
the investigation of electrical wave propagation in healthy and
pathological cases (e.g. arrhythmia, dyssynchrony) on the tis-
sue or organ level, the phenomenological models are conve-
nient due to their easiness of implementation and relatively
reduced computational effort compared to the ionic models.
In this context, the Aliev-Panfilov model [1] is one of most
employed approaches which provides an excellent description
of myocyte excitation. The model is able to mimic the intrin-
sic characteristics of the transmembrane potential and lumps
the influence of all ionic currents in a single slow recovery
variable. Within this contribution, both of the aforementioned
models are employed.

Moreover, a mechanical deformation causing a myocardial
elongation can induce an additional ion transmission through
the membrane that might alter the electrical activity of the
myocardium and this phenomenon is called mechano-electric
feedback (MEF). MEF is often described by a simple equation
that is a linear function of the stretch along the fibre direction
in accordance with the experimental observations [16].
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3 Application of the numerical framework to
real-life situations

Figure 2: Generation of a virtual biventricular model from
cMRI data. From left to right, segmentation of the left ven-
tricle (LV) endocardial and epicardial wall at end-diastole on
one of the slices in the short axis view, construction of the
frame through the coordinates obtained from the segmenta-
tion, creation of truss elements over the boundaries, creation
of surface elements over the boundaries and creation of 3D
solid by unifying all surface elements on the boundary. The
right ventricle is generated by following the same steps and
is then unified with the LV to obtain the virtual biventricular
heart model.

3.1 Fibrillation and defibrillation

One of the important pathologies encountered in cardiology
departments is rhythm disorders, e.g., fibrillation, braycar-
dia and tachycardia. Among them, ventricular fibrillation ne-
cessitates an urgent intervention since the heart cannot pump
blood anymore and death or permanent damage can occur in
a couple of minutes. Applying an external electrical field,
which is often called defibrillation, is a frequently utilized ef-
fective technique to terminate the chaotic electrical activity.
The aim is to constitute an electric circuit in the cardiac tissue
through which the currents propagate and to bring the chaotic
electrical activity to an end.

In the following, an FE simulation of a virtualized biven-
tricular heart model is demonstrated where regular beat,
arrhythmia and recovery of the regular beat by applying
an external shock are mimicked. Moreover, an ECG is
recorded during the entire simulation which is one of the
most frequently utilized diagnostic tools, since it can be non-
invasively and immediately obtained and guide cardiologists
to reveal the abnormalities in electrical activity and contrac-
tion of the heart. The virtual biventricular heart model is
generated from a cMRI of a 38-year old healthy volunteer’s
(male) biventricles, see Figure 2. In the simulation, the me-
chanical field is not considered. The interested reader is re-
ferred to [4] for a more extensive (de)fibrillation example in-
cluding the mechanical field.

The snapshots belonging to the numerical analysis are
demonstrated in Figure 3 along with the graph depicting the
ECG. The excitation of the ventricles is initiated with depolar-
ization of the atrioventricular node and the first regular cardiac
cycle is presumed to start at time ¢ = 100 ms. In the following

cycle beginning at time ¢ = 900 ms, after the ventricles start
to go through the repolarization phase, an arrhythmia is in-
duced by injecting an extra current to the material points that
stand in the tail of the repolarizing wave, see the snapshot at
time ¢ = 1314 ms. The applied external stimulus also reveals
itself on the T-wave segment in the ECG, where the ventricles
are vulnerable to an arrhythmia. After destroying the regu-
lar heart rhythm, a clear manifestation of the reentrant scroll
wave is present in the snapshots. On the other hand, disor-
dered deflections are observed with changing magnitude and
formation in the ECG, which also indicates a fibrillatory state
of the ventricles. In clinical routine, such a diagnosis would
be swiftly treated by applying an external shock.

In order to mimic this phenomenon, an electrical field is
generated by applying an outflux and an influx to a small re-
gion on the LV epicardium and the LV endocardium, respec-
tively, in the time interval ¢ € [3410, 3460]. Upon the applied
shock, the chaotic electrical wave propagation, i.e. arrhyth-
mia, is terminated and the ventricles go into a completely
repolarized state. Thereafter, the ventricles are again depo-
larized from the atrioventricular node at time ¢ = 4100 ms.
Observe that an inverse T-wave in the ECG, indicating an ab-
normal transmembrane potential distribution, is displayed in
the cycle right after the defibrillation. This electrical irregu-
larity undoubtedly arises from the perturbed restitution prop-
erties of the myocardium during the arrhythmia. However, the
restitution properties and usual transmembrane potential dis-
tribution are recovered and the ECG takes its regular shape as
the ventricles are further excited.

3.2 Cardiac resynchronization therapy

Another serious pathological condition of the heart is ventric-
ular dyssynchrony which occurs most likely due to abnormal
electrical conduction. For example, left or right bundle branch
block, scar tissue, infarcted regions or cardiomyopathy might
result in irregular electrical wave propagation leading to un-
synchronized mechanical activations, unusual loading condi-
tions and deformations of the myocardium. In most cases,
the result is unfortunately heart failure. This pathology is of-
ten manifested as a long QRS duration (> 130 ms) in ECG
and a considerably diminished LV ejection fraction (EF). In
such cases, cardiac resynchronization therapy (CRT) is one of
the most frequently used treatment methodologies for patients
having reduced cardiac pump function.

The idea behind CRT is to deliver electrical pulses to spe-
cific regions in the heart, thereby synchronizing the contrac-
tion and increasing the cardiac output. In this example, we
mimic CRT in the virtualized biventricle model and demon-
strate how we improve the cardiac function by applying ex-
ternal electrical pulses in computer simulation. In the simula-
tion, both electrical and mechanical fields are considered.

In the model, dyssynchrony is induced by altering the ma-
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Figure 3: Demonstration of regular heart beat, arrhythmia and its termination (defibrillation) by an externally applied elec-
trical field. In the snapshots, the transmembrane potential distribution is shown and the graph presents the ECG, normalized
voltage, recorded during the simulation.
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terial parameters throughout some regions of the biventricle,
shown in Figure 4, so that the tissue becomes more stiff, the
contractility is diminished, the action potential duration is in-
creased and the conduction velocity is considerably reduced.
Hence, this region turns into an obstacle for the propagating
electrical waves and contracts weakly. The result is a dys-
function of the ventricles, which is indicated by the prolonged
QRS complex (144 ms) in the ECG and the low LV EF (29
%) in the volume-time (v-t) diagram, see the first two cycles
in Figure 5. In order to improve the cardiac output, we start
applying the CRT with the cycle beginning at time ¢t = 1700
ms throughout three subsequent cycles in terms of an outflux
to a small region on the endocardial surface of the right ven-
tricle and an influx to a small region on the epicardial surface
of the LV free wall, see Figure 4 (right) for the pacing sites.
Upon the CRT, we achieve notable improvements in the car-
diac function. The QRS complex is shortened to 122 ms and
an elevation of 17 ml in SV and 9% in EF of the LV is ob-
served, which could be considered a desirable improvement
of cardiac systolic function in clinical routine. Note that upon
the application of the CRT, a significantly different morphol-
ogy in the ECG appears due to the altered pattern of elec-
trical wave propagation. For instance, as the depolarization
wave front propagates from the base to the apex, it suddenly
changes its orientation for a short time to the opposite direc-
tion, which is displayed as a zigzag in the QRS complex. In
addition, we observe a smaller T-wave amplitude implying a
slower repolarization process of the ventricles due to the al-
tered restitution properties. At the end, we stop applying the
external electrical field after three cardiac cycles and begin-
ning from time ¢ = 4100 ms, the ECG morphology and LV
v-t relation turn back to their initial values as those before the
CRT is applied. A more detailed discussion of CRT simula-
tion and its comparison to the healthy case can be found in

[51.

Figure 4: Illustration of the infarcted zone from different
views and the pacing sites during the CRT attempts. The
regions in red colour are infarcted while the healthy regions
have blue colour. In the second view (right), the green and red
crosses depict the influx and outflux sites, respectively, during
the CRT.

3.3 Commotio cordis and precordial thump

Though rare, one can experience a life-threatening arrhythmia
leading to sudden cardiac death although there is no sign of
cardiac disease [14]. This event can simply originate from a

moderate impact to the chest which causes an abnormal defor-
mation of the heart. The result is the generation of unexpected
electrical stimuli through stretch-activated ion-channels (i.e.
MEF) which disturb the regular rhythm of the heart. This phe-
nomenon is mostly seen in young athletes playing e.g. base-
ball or ice hokey, where there is a high risk of an impact to the
chest. In case of such an arrhythmia, an immediate applica-
tion of a defibrillator device increases the chance of survival.
However, in the absence of a defibrillator, a moderate impact
to the chest, which is known as precordial thump, might be an
effective intervention to terminate the irregular heart rhythm.

These phenomena are mimicked with our numerical frame-
work in the biventricle model and the results are presented in
Figure 6. The regular excitation-contraction coupling is dis-
turbed by a blunt impact to the precordial LV region, noted as
1%t impact in the ECG. Observe that the mechanical impact is
applied within the time period where the ventricles are vulner-
able to arrhythmia, as done in the first example in which we
induce arrhythmia via external stimuli. Thereafter, the ECG
indicates a chaotic wave propagation in the ventricles. Con-
sequently, the heart cannot pump blood as manifested in the
LV v-t diagram. Nearly 3.7 seconds after the beginning of the
arrhythmia, we apply a second mechanical impact, noted as
ond impact in the ECG, causing stretch activated ion-channels
to generate another electrical stimulus which eventually be-
comes an obstacle for the arrhythmia and terminates it.

3.4 Application of a drug: verapamil

In this example, we demonstrate the application of a drug
called verapamil which is known as a calcium channel
blocker. Verapamil is often used to treat patients having hy-
pertension, high ventricular rate and chest pain. It takes ef-
fect by blocking certain ion channels on the cell membrane,
which leads to reducing the muscle contractility as a result of
diminished intracellular calcium concentration, so that blood
vessels are dilated and the load on the heart is lowered. Ac-
cordingly, the heart relaxes and does not have to pump the
blood so strongly.

In order to study the effect of verapamil on the electrome-
chanical behaviour of the ventricles, we consider a control
case and two drug cases with different concentrations of vera-
pamil. Different from the previous examples, the cardiac elec-
trophysiology is described by the ionic model of ten Tusscher
et al. [17] and a personalized LV model from echo is used in
the simulations, see Figure 7. The results of the simulations
are presented in terms of an ECG and a v-t relation for each
case in Figure 8.

The control simulation displays a regular ECG with a sat-
isfactory duration of the QRS and QT intervals. Moreover, an
EF of 69 % is measured. These markers indicate a physio-
logical range for the electrophysiology and the mechanics of
the LV behaviour. On the other hand, when a verapamil con-
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Figure 5: Demonstration of cardiac cycles without and with CRT in the dyssynchronous model. In the snapshots, the trans-
membrane potential distribution is shown and the graph presents the ECG, normalized voltage (upper curve), and LV v-t
diagram, normalized volume (lower curve), recorded during the simulation. Moreover, the QRS duration, stroke volume (SV)
and EF are given for each cycle.

winter 2020

23



24

Simulating Clinically Relevant Cases in Cardiology via Numerical Tools

VHOL®VD

t = 920ms + = 980ms t = 1200ms ¢ = 1260ms t = 1280ms t = 1440ms ¢ = 2800ms
¢ = 3300ms t = 3800ms t = 4300ms t = 4970ms ¢ = 5100ms ¢ = 5300ms t = 5720ms
& [mV]
—s0 HIINTTT T 20
‘ . T |
15" impact ] RN N \ ] 27 impact
| A a N, AN \L |
0 N N n | | N[ ra | ' N
O | A | NIVA \ JIRURWENTAR A A \l | | | /
- WEANANS N N (AN /\ W\l /
| \[ I\ Y | |
! Vo | | !
1 ‘ 1
° — — : L ;u B ]
50 \ i \
g \ / \ | \
/ J’:‘ ! ./
100 900 1700 2500 3300 4100 4900 5700 6500
time [ms]

Figure 6: Demonstration of commotio cordis and precordial thump. In the snapshots, the transmembrane potential distribution
is shown and the graph presents the ECG, normalized voltage, and LV v-t diagram, normalized volume (lower curve), recorded
during the simulation. Note that the snapshots at time ¢ = 1260 ms and ¢ = 4970 ms are taken at different views in order to
make the mechanical impact more visible.
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centration of 100 nM is applied, repolarization occurrs earlier
and more uniformly causing a smaller QT interval and a re-
duction in the magnitude of the T-wave. Besides, verapamil
suppresses the contractility, i.e. the active stretch, leading to a
reduced EF of 58 % and a decrease in the duration of ventric-
ular contraction (systole).

Furthermore, the larger concentration of verapamil with
1500 nM makes the repolarization and end-systole occur
much earlier. The QT interval decreases significantly and the
T-wave is inverted. In addition, a low EF of 35 % is obtained
along with a much reduced systole duration. Furthermore, the
duration of the QRS complex remains constant, while its mag-
nitude decreases for higher concentrations of verapamil. The
tendency observed in the ECGs and v-t relations can be ex-
plained as follows. The action potential duration of myocytes
is reduced as the concentration of verapamil is increased. This
causes an abbreviated QT interval and also affects the action
potential duration dispersion leading to the smaller and in-
verted T-wave. Additionally, verapamil lowers the magnitude
of the active stretch, resulting in a smaller EF.

Figure 7: The steps of the virtual LV model generation from
4D echo data. From left to right, segmentation of the endo-
cardial and epicardial surfaces at end-diastole, construction of
the endocardial and epicardial frame through the coordinates
obtained from the segmentation, creation of surface elements
over the endocardium and epicardium, creation of surface el-
ements over the basal region in order to obtain a closed vol-
ume and unification of all surface elements in order to create
a solid LV geometry.
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Figure 8: Illustration of the application of two concentrations
of verapamil (cyerap = 100 and 1500 nM) and its compari-
sion to the control case (Cyerap = 0 nNM). The graph presents
the ECG, normalized voltage, (upper curves) and v-t diagram
(lower curves).
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4 Conclusion

The advent of computational facilities provides a great pos-
sibility for examining the heart in a virtual manner, i.e. non-
invasive, cheap and fast. In the near future, cardiologists will
undoubtedly derive more and more benefits from numerical
tools for gaining deep insight into the working mechanisms
of the heart and developing successful patient-specific treat-
ment methods. In this contribution, we presented our latest
numerical developments serving as a milestone towards this
ultimate goal. We illustrated the feasibility of the numerical
scheme through elaborate numerical examples that are clini-
cally relevant and interesting.
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1 Abstract

In the early stages of human brain development, the
initially smooth outer layer, the cortex, buckles into
a highly convoluted pattern—driven by growth-induced
mechanical instabilities. The cortical folding pattern is
closely correlated with brain function. Therefore, malfor-
mations are an important clinical indicator for neurolog-
ical disorders, such as schizophrenia or epilepsy. Com-
putational mechanics is a powerful tool to understand
the underlying mechanisms of cortical malformations and
to assist diagnosis and treatment of associated diseases.
This, however, will only become possible if we succeed
in linking (disrupted) cellular brain development on the
microscopic scale to (ab)normal cortical folding on the
macroscopic scale. Here, we use a multifield computa-
tional framework, which couples an advection-diffusion
model with finite growth, to model the complex inter-
play between cell division and migration, cellular con-
nectivity, and cortical folding during physiological and
pathological brain development.

2 Introduction

Throughout brain development, the complex structure
of this fascinating organ keeps changing —on both micro-
scopic and macroscopic scales—in close relation to brain
function. Computational models based on the nonlinear
field theories of mechanics are a promising tool to trans-
fer processes on the cellular scale to structural changes
on the continuum scale.

On the cellular scale, progenitor cells divide symmetri-
cally and asymmetrically in the inner layers of our brain
in the early stages of development [5, 23, 13]. The newly
generated neurons deep inside the brain then migrate
outwards along so-called radial glial cell (RGC) fibers,
and finally form the cortex from the inside to the out-
side [22], as illustrated in Figure 1, left. RGC fibers
control the migration direction of neurons. After about
20 weeks of gestation, the neuronal cells settled in the
cortex start to interconnect, which initiates a significant
expansion of the outer cortical brain layers. Not only
neurons, but also other cellular components such as glial
cells (astrocytes, oligodendrocytes, and microglial cells)
and capillaries start to accumulate and grow [3] (Figure
1, right). The cortical expansion during neuronal con-
nectivity is constrained by slower growing inner layers
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[20]. Thus, compressive stresses emerge, which eventu-
ally induce mechanical instabilities and cortical folding
[24, 4, 13]. If either cell migration or cellular connectivity
are disrupted, cortical malformations can occur, which
are associated with mental disorders including develop-
mental delay, epilepsy, or schizophrenia [19, 2]. Compu-
tational mechanics can help to elucidate the underlying
(physical) mechanisms of such diseases [13].

3 Computational model

3.1 Coupling cellular migration, cellular connec-
tivity, and volume growth

We can model the (physiological and pathological) cor-
tical folding process using the theory of finite growth
[4, 12]. This common approach multiplicatively decom-
poses the deformation gradient F' into an elastic part F'°
and a growth part F'¢ [25],

F=Vxp=F° F® (1)

The key is then to prescribe the growth tensor F'® and its
evolution in time to realistically mimic the phenomena
underlying growth in the developing brain. We assume
that the cortex layer grows anisotropically during the
phase of emerging neuronal connectivity. Therefore, we
formulate the growth tensor as

Fe=9t [I-NoN]+9 NoN 21], (2)

where IN denotes the outward pointing normal in the
reference configuration By, and 9+ and 9/l denote the
scalar-valued growth multipliers controlling the amount
of growth in the tangential and radial directions, respec-
tively, as illustrated in Figure 2.

The balance of linear momentum forms the key equation
to describe the deformation of the brain during cortical
folding. Herein, we reformulate the stresses in terms of
the elastic deformation F° computed from the growth
tensor in equation (1). This constitutes the first balance
equation of the coupled problem, which, in the spatial
configuration B;, reads

dive(F°) = 0. (3)
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Figure 1: Schematic illustration of early brain development and neurogenesis, as well as neuronal connectivity

resulting in cortical folding.

To link cellular processes, such as cell division in the
inner brain layers, cell migration along radial glial cell
fibers, and tangential migration of interneurons, with
macroscopic growth and folding, recent studies have pro-
posed to introduce the cell density as an additional scalar
field ¢p, which is kept in balance through the cell density
source R, representing cell division, and the cell density
flux Q. representing cell migration [28, 16].

We then additionally solve the balance of mass [17],
which, in the reference configuration By, is given by

¢ = DivQ. + Re, (4)

while the corresponding equation in the spatial configu-
ration B; reads

%c—l—é:divqc—l—rc, (5)

where J is the Jacobian J = det F', and q. and r. are
the spatial cell density flux and source, respectively [16].
We further couple the cell density problem with volume
growth through a cell-density-dependent growth multi-
plier

9t = [1+/<;J‘c]a ol = [l—i—m”c]a, (6)
where x+ and k!l denote the scalar-valued, spatially vary-
ing tangential and radial growth factors, and « denotes
the growth exponent [16].
This approach enables us to explicitly predict how dis-
ruptions on the cellular level affect growth, folding, and
structural abnormalities on the continuum scale.

0 c

Figure 2: Kinematics of finite growth based on the mul-
tiplicative decomposition of the deformation gradient F'
into an elastic part F*¢ and a growth part F'8. The de-
formation map ¢ maps tissue at position X in the un-
deformed, ungrown reference configuration By to its new
position = (X, t) in the spatial, grown and deformed
configuration ;. The growth tensor F'® maps tissue from
the reference configuration to a stress-free configuration
after growth B, and is coupled to cell division, migration
and diffusion through cell-density-dependent tangential
and radial growth multipliers 9+ and 9!, wherein the
cell density c is introduced as an additional field with its
reference distribution co(X).
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Figure 3: Exemplary evolution of the cell density field and cortical folding. The simulation (top row) well cap-
tures the evolving surface pattern shown on magnetic resonance images of the developing fetal brain (bottom row),
adapted from [18].
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Figure 4: The temporal evolution of cell density, von Mises stress, radial, and tangential growth factors estimated
at the green and yellow points in Figure 3 corresponding to gyri and sulci, respectively.

3.2 Constitutive equations equation,

Mathem.atically, we formulate t.he flux term ‘?hat appears qc = —cH(ey) v(@) +d° - Ve, (7)
in equations (4) and (5) by using a convection-diffusion

winter 2020

29



30

Coupling cellular brain development with cortical folding

where the reference and the spatial fluxes are related
by Q. = Jq.- F~T [15, 16]. The flux is a summa-
tion of two terms. The first term (migration term)
represents the migration of the cells along the radial
glial cell fiber direction towards the brain surface, as
illustrated in Figures 1 and 2. The second term (dif-
fusion term) represents cellular diffusion, which oc-
curs when the neurons have reached the cortical lay-
ers [14]. The nonlinear Heaviside function H(c;y) =
exp (7(c— )/ [1+exp (v(c— )], controls the dis-
tribution of the cell-density field, where ¢V is the migra-
tion threshold. The migration velocity v = vn/ || n ||
defines the direction and speed of neuronal migration.
Here, n denotes the normalized radial glial cell fiber di-
rection vector in the spatial configuration, as illustrated
in Figure 2. The diffusion tensor d°° = d°°I describes
isotropic diffusion with diffusivity d°°. The Jacobian
links the reference source term to the spatial source term
by R. = Jr.. The cell division rate G°(x) defines the
spatial source term

r.=G(x). (8)

Importantly, cellular rearrangements during brain devel-
opment, as schematically shown in Figure 1, not only re-
sult in tissue growth but also in changes in tissue stiffness
[29, 27]. This process has not yet been well assessed ex-
perimentally in humans and therefore constitutes a chal-
lenge when choosing appropriate material laws and ma-
terial parameters to simulate brain development. Impor-
tantly, especially for cortical folding, the stiffness con-
trast between the different layers, cortex and subcortex,
plays a key role and largely controls the evolving surface
pattern and the mode of instability [12]. Here, we model
brain tissue as a neo-Hookean hyperelastic solid with the
strain-energy function

1 2/ e
S A(°) 9)

1
o n [F*F* =3 —2In(J)],

V() =

where 1 and A are the Lamé constants. To capture the
varying stiffness due to tissue maturation in the develop-
ing brain, we introduce the shear modulus as a function
of the cell density c,

Fmax if ¢ > cmax,
p(e) =% po+me(ec— ) if  cpax > ¢ > 0,(10)
Lo if c<d.

where pg and fiax are the minimum and maximum shear
moduli at the beginning and end of gestation, respec-
tively, with corresponding cell densities ¢ and ¢ax. The

cell density corresponding to the lowest shear modulus is
equal to the migration threshold. The gradient m. is
computed as

_ Hmax — HO . (11)

me 0
Cmax — C

We note that this positive relation between cell density
and brain tissue stiffness is only valid during the develop-
mental phase [27], while the trend appears to be reversed
in the fully developed brain [7]; it changes throughout the
life cycle of the human brain [8].

4 Results

4.1 Spatio-temporal evolution of cell density,
stiffness and cortical folding

To validate the computational model, we use a sim-
ple 2D problem representing a part of the frontal lobe
of the human brain, as illustrated in Figure 3. We
use the material parameters, which we obtained from
biomechanical experiments of different regions of human
brain tissue under multiple loading modes [10, 9]. Our
study showed that the cortex is approximately three
times stiffer than subcortical areas with a cortical shear
modulus of 2.07kPa and a subcortical modulus of ap-
proximately 0.65kPa. As these values were measured
in the fully developed brain-—not during early stages of
development —we have additionally systematically var-
ied the stiffness ratio between the cortex and subcortex
Bu = e/ s in the range of 3 and 10 to investigate its
effect on the cortical folding pattern. We observed most
realistic patterns for stiffness ratios between 3 and 5.
An additional critical factor for the folding process is
the growth ratio between tangential and radial growth
By = Kt/ kl (see equation 6), which we have varied be-
tween By = 1,1.5, and 3. Table 1 summarizes all model
parameters used for the simulation in Figure 3.

Figure 3 contrasts the simulation results with magnetic
resonance images of fetal brains published in [18]. The
simulation well captures the evolution of cortical folds
from week 17 until week 34 of gestation. Figure 4
shows the corresponding evolution of cell density, von
Mises stress, as well as radial and tangential growth
factors at a representative point in a gyrus and sul-
cus, respectively, marked as green and yellow points in
Figure 3. The model predicts the known phenomenon
that cell density and growth are lower in sulci than
in gyri. Both show a pitchfork-like bifurcation at the
initiation of cortical folding: the initially uniform dis-
tribution of cell nuclei and growth in the cortex starts
to decrease in sulci, while it continues to increase in
gyri. In contrast, the von Mises stress starts to drop in
gyri at the instability point, but rises again after reach-
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Table 1: Model parameters.

parameter

cortical stiffness Ihe
stiffness ratio By
first Lamé parameter
division rate G*
migration speed v
migration threshold — ¢°
Heaviside exponent y
diffusivity dee
growth parameter Kt
growth exponent @
growth ratio B

ing a local minimum at around 29 weeks of gestation.

In the sulci, the stress reaches its maximum at around
31 weeks of gestation and then starts to decrease until
it even drops below the stresses in gyri at around 34
gestational weeks.

Figure 5: Numerically predicted orientation of radial
glial cell fibers well resembles the fan-like structure
known from the human brain.

Interestingly, our simulations suggest that certain fea-
tures such as the fan-like distribution of radial glial
cell fibers, which have been regarded as possible driving
forces of cortical folding in the neuroscience community
[6], are rather a result than a cause of the folding pro-
cess, as numerically predicted in Figure 5. These insights
demonstrate the value of coupling processes on the cel-
lular level with cortical folding. Only then, it becomes
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possible to connect knowledge from the neuroscience per-
spective with results from numerical analyses of cortical
folding.

4.2 The effect of brain geometry

human brain

swelling experiments

mechanical model

Figure 6: The three-dimensional cortical folding pattern
in the developing human brain at gestational week 22,
at birth, and at the age of 30 (top), compared to the
swelling of a bilayered silicone elastomer (middle), and
finite element simulations (bottom).

Besides stiffness and growth, geometrical factors, espe-
cially cortical thickness and local brain curvature, play an
important role for the evolving folding pattern [11]. As
it is difficult to obtain fine resolution three-dimensional
data on the evolution of the brain’s surface during devel-
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opment in utero, we propose to use an experimental setup
to further validate the computationally predicted folding
patterns. We study the effects of abnormal brain shape,
cortical thickness or brain stiffness through swelling ex-
periments with silicon elastomers, where the outer layer
representing the cortex swells when immersed in solvent
[26]. Due to the constraint by the inner core represent-
ing the subcortex, folds emerge that closely resemble the
morphology of the human brain at birth, as illustrated in
Figure 6, middle. Through the combination of coupled
simulations, swelling experiments, and imaging analyses
of the human brain, our goal is to extract purely ge-
ometrical effects from cell programming and biological
factors.

5 Conclusions and future perspectives

Computational mechanics have become a powerful tool
to predict the structural development of the human
brain. It may open new pathways where traditional
medical approaches reach their limits. While the role
of mechanics for brain function, injury, and disease is in-
creasingly appreciated by neuroscientists, biologists and
medical researchers, mechanical aspects have so far not
been adopted to enhance daily clinical practice. In this
respect, the current approach constitutes an important
step to enable mechanics-enhanced diagnosis and treat-
ment strategies in the future. Through the presented
methodology, we aim to link the diagnostic findings on
the microscopic scale, for instance from histological sec-
tions, with clinical data on the organ scale, e.g., from
magnetic resonance images —to obtain unprecedented in-
sights into diseases associated with brain malformations.
To further calibrate and validate our simulations in the
future, we are currently collaborating with neuropathol-
ogists, who will provide us with cell density distributions
from histological stains at different stages of human brain
development. In addition, future steps will include tack-
ling neurological diseases such as epilepsy and modeling
the active behavior of cells. Mechanical properties of
their micro-environment affect cell migration, prolifera-
tion, and growth. In turn, the cells produce the extra-
cellular matrix and therewith alter the mechanical prop-
erties of their environment. This leads to a highly cou-
pled, yet very exciting problem. Modeling these pro-
cesses computationally will revolutionize the opportuni-
ties to use simulations to advance diagnosis and treat-
ment of neurological diseases or brain injury. While it
will be challenging to accurately calibrate and validate
such models, they may eventually help to find alternative
identification criteria and treatment strategies for neuro-
logical disorders that are directly linked to malformations
of cortical development, such as epilepsy, schizophrenia,
or autism [1, 2].
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1 Abstract

In computational biomechanics, the gastro-intestinal
tract (stomach and intestine) is much less studied than
the cardio-vascular system. The focus on the cardio-
vascular system is most likely a consequence of its vital
importance, whereas gastro-intestinal pathologies often
result in a substantial and permanent reduction of the
quality of life but are in many cases not deadly. How-
ever, as life expectancy keeps increasing, quality of life
is becoming more and more important. Hence, we can
expect that the gastro-intestinal tract will attract more
and more attention over the next years. In this arti-
cle, we briefly summarize the state of the art and high-
light opportunities for computational researchers in this
emerging area of computational biomechanics.

2 Introduction

Pathologies related to the gastro-intestinal tract are a
frequent cause of morbidity with an associated high eco-
nomic cost and substantial reduction of the quality of life.
For example, gastro-esophageal reflux disease (GERD)
causes an estimated $20 billion/year of healthcare costs
in the US alone [14]. At the same time, in the general
population of industrialized countries 10% - 45% are as-
sumed to suffer from dyspepsia (indigestion) [23], and
the soaring prevalence of obesity has resulted in hundred
thousands of bariatric surgeries per year in the US and
EU together [5, 1]. All these issues are closely related
to the mechanics of the stomach. At the same time,
nobody has yet proposed a computational multi-physics
model of the stomach combining at least the most impor-
tant aspects of its mechanics, that is, the fluid mechan-
ics of the digesta and the electromechanics of the gastric
wall in a comprehensive computational framework. This
limitation of the state of the art can be understood as
a great opportunity for researchers from computational
mechanics. In the following, we give a brief introduction
to the state of the art in computational gastric mechan-
ics and highlight promising opportunities in this field for
researchers from computational mechanics.

esophagus fundus

corpus
small bowel

ontraction

antrum

Figure 1: The stomach is located between esophagus and
small bowel and can be divided into three regions, fun-
dus, corpus, and antrum. Whereas the fundus mainly
serves for storing digesta, corpus and antrum are respon-
sible for mixing and grinding them by muscular con-
traction waves that originate in the upper (proximal)
part of the stomach and propagate towards the pylorus,
which is separating the stomach from the small bowel;
illustration created by Christian J. Cyron and Roland
C. Aydin, licensed under CC BY 4.0 (creativecom-
mons.org/licenses/by/4.0/legalcode)

Anatomically, the stomach connects the esophagus and
the intestine. Food arrives through the mouth and esoph-
agus in the stomach. The stomach is storing, mixing, and
grinding the digesta before they are passed for further di-
gestion through the pylorus into the small intestine. The
stomach is a roughly J-shaped hollow muscular organ
(Figure 1), filled with a fluid-like content, the digesta.
The mechanics of the wall of the stomach is formed by
living tissue and exhibits both a passive elasticity and an
active muscular tension. The digesta arrive in the stom-
ach in the form of still solid-like food boluses and are
subsequently degraded and diluted in the liquid environ-
ment of the stomach until they form a multi-phase fluid.
This process is promoted by rhythmic muscular contrac-
tions of the stomach, so-called peristaltic waves moving
along the stomach. These are controlled by slow elec-
tric waves propagating along the stomach. Thus, com-
putational modeling of the stomach touches a number
of different issues complex in nature. The related key
questions are, how to model the
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1. (passive) elasticity of the gastric wall,

2. propagation and effect of electric waves in the gastric
wall,

3. (active) muscle tension in the gastric wall,

4. both solid and liquid phases of the digesta in the stom-
ach,

5. interactions between the digesta and the gastric wall.

In the subsequent sections, the state of the art with re-
spect to these five key questions as well as open problems
are discussed.

3 Elasticity of the gastric wall

The mechanical properties of the stomach wall are highly
specific. They are affected by environmental factors and
age. Like many biological tissues, the gastric wall ex-
hibits a highly nonlinear and anisotropic elastic behavior.
It can be modeled by a nonlinear strain energy function
W. With the deformation gradient F, Cauchy stress can
then be computed as

—F7T, (1)

For a discussion of appropriate strain energy func-
tions and constitutive parameters for the gastric wall, the
reader is referred to [17, 18, 19, 3, 12, 4]. Generally, the
elastic properties of gastric tissue greatly vary between
the three major regions of the stomach, the fundus, the
corpus, and the antrum (Figure 1). To date, most avail-
able data about the elastic properties of gastric tissues
come from animal tissues, and there remains in partic-
ular a need for more mechanical tests of human gastric
tissue. These may help to understand whether or how
changes in the elasticity of the gastric wall are related to
pathologies such as dyspepsia or morbid obesity.

4 Electric waves in the gastric wall

For mixing and grinding the digesta, slow muscular con-
tractions waves are propagating through the stomach,
so-called peristaltic contractions. These are controlled
by slow electric waves initiating in the upper (proximal)
part of the stomach and propagating towards the pylorus
with a frequency of around 3 cycles per minute. The
electric waves are governed by a biological system that
is by far more complex than the one controlling the con-
tractions of the heart. This system relies on a complex
interplay between smooth muscle cells (SMC) and the so-
called interstitial cells of Cajal (ICC) [9, 25, 28]. Based
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on homogenization techniques [13], continuum reaction-
diffusion models of gastric electrical activity of varying
complexity can be derived [2, 24, 8, 26, 10]. [7] showed
that the following simple so-called monodomain model is
sufficient to reproduce at least the most important pat-
terns of slow electric wave initiation and propagation in
the gastric wall on the continuum level:

' o 4
i e @)
o™
o = AV G+ Tgap. (3)

Here, v’, v™ are the electric transmembrane potentials
of ICC and SMC, respectively, o?, o™ denote isotropic
diffusion parameters for the electrical potential in these
two components of the tissue, A is the Laplace oper-
ator, and I!,,, I'" and I,,, are electric currents. To
compute these currents, either simple phenomenological
equations or complex scale-bridging models relating cel-
lular and organ level can be used. The development
of such scale-bridging models is an active field of re-
search and will probably remain so for at least the next
decade. Computational modeling can be expected to be
a powerful tool to develop and validate hypotheses in this
area. To this end, a good starting point is the biophysi-
cal model of gastrointestinal electrical activity developed
by [22, 21]. The simulation of stable ring-shaped con-
duction patterns with the above-mentioned simple phe-
nomenological model of slow electric wave initiation and
propagation is illustrated in Figure 2 and Figure 3 (up-
per row) for a simple cylindrical gastric model geometry.
The above-mentioned model can also produce perturbed
propagation patterns that may help to understand gas-
tric dysrhythmias and thus perhaps also dyspepsia (Fig-
ure 3, lower row).

5 Active muscle tension in the wall

The electric slow waves propagating through the stom-
ach are controlling smooth muscle tension in the gas-
tric wall through complex cellular processes where free
intracellular Ca**) ions play a key role [16, 25]. The
resulting muscular (peristaltic) contractions are mixing
and grinding the digesta. Theoretical and experimental
investigations of active SMC tension in the gastric wall
is challenging. Only recently have the active mechanical
properties of gastric smooth muscle tissue been studied
for the first time in detail in experiments [27]. To model
active tension in the gastric wall, two major approaches
have been developed, the active stress and the active
strain approach. In the active stress approach, the total
stress in the gastric wall is computed as the sum of an
elastic stress following Eq. (1) and an additional active
muscular stress [16]. By contrast, in the active strain
approach, the deformation gradient F of the gastric wall
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Figure 2: Spatiotemporal plot of slow electrical wave propagation in ICC (left) and SMC (right) in a one-dimensional
domain used for testing purposes. Slow waves in SMC follow the excitation by ICC with a small delay and reduced
amplitude; adapted from [7], licensed under CC BY 4.0 (creativecommons.org/licenses /by /4.0/legalcode).
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Figure 3: Generation and propagation of stable ring-shaped slow electric waves in ICC on an idealized cylindrical
stomach geometry (upper row). At t=>500s, a perturbation of gastric electrophysiology modeling, for example,
a pathological change of the gastric wall, is simulated by the addition of a conduction block. It results in the
formation of a spiral-like pattern (lower row) and associated disordered peristaltic contractions of the stomach;
illustration created by Christian J. Cyron and Sebastian Brandstaeter, licensed under CC BY 4.0 (creativecom-
mons.org/licenses/by/4.0/legalcode)



can be decomposed multiplicatively via
F=F.F, (4)

into an inelastic part F, representing the load-free state
of the tissue in the presence of a certain muscular ten-
sion, and a remaining elastic part F.. The latter ensures
geometric compatibility of the deformation of the stom-
ach as a whole, and the strain energy W in Eq. (1) solely
depends on this elastic part. The first active strain model
of the gastric wall stress was introduced by [7], using

Fa =1 _7(ach ®Nc+alNl ®Nl) +7nNn ®Nn (5>

Here, N, N; and N,, are the circumferential, longitu-
dinal and wall-thickness direction of the gastric wall,
respectively, and «., a; are material parameters. The
excitation-contraction coupling is realized by the acti-
vation parameter v via a Heaviside-type function v =
~v(v™), where =y, ensures incompressibility of the tissue
under contraction. A finite element simulation of the
gastric wall as a coupled system including the propaga-
tion of electric slow waves, the passive elasticity, and the
active muscular tension (controlled by the electric slow
waves) is presented in Figure 4. For more detailed mod-
els of the active muscle tension in the gastro-intestinal
wall, the reader is referred to [20, 15].

o
disp. magn. [mm]

Figure 4: Computational active strain electromechani-
cal model of and idealized cylindrical stomach geometry
showing travelling phasic contraction waves of peristal-
sis, adapted from [7], licensed under CC BY 4.0 (cre-
ativecommons.org/licenses /by /4.0/legalcode)

6 Multi-phase flow of digesta

Mixing and grinding of the digesta in the stomach has
been simulated so far only on the basis of highly sim-
plified Newtonian or Non-Newtonian fluid models [11].
In reality, however, digesta are typically complex multi-
phasic materials consisting of one or several fluid phases
as well as of one or several solid phases, for example,
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food particles that are mechanically and chemically de-
graded in the stomach. Computational modeling of these
aspects can help to understand the mechanical aspects
and possibly also origins of certain gastric pathologies.
It appears that much could be achieved in the future in
this area of biomechanics by simply transferring progress
that has been made in other areas of computational fluid
mechanics over the past two decades to the specific prob-
lem of gastric mechanics.

7 Fluid-structure interactions

So far there is only a very limited number of studies of
the fluid mechanics of the digesta in the stomach. These
studies are not only limited to simple fluid models but
additionally they all prescribe the motion of the gastric
wall in a rigid form. Fluid-structure interactions between
the digesta and the elastic gastric wall have not yet been
modeled. It is well-known that these play key roles in
the process of digestion in general and also in the com-
plex hormonal control loops regulating food intake in
particular. However, computational modeling of fluid-
structure interactions in the stomach is much more chal-
lenging than, for example, in arteries or also the heart.
The reasons for this are the extreme deformations of the
stomach during ingestion and digestion of food and more-
over also the above-mentioned multi-phase character of
the digesta. The development of computational models
overcoming these difficulties is a promising area of in-
vestigation for researchers with a strong background in
fluid-structure interactions and computational fluid dy-
namics.

8 Conclusions

While the importance of the gastro-intestinal tract for
healthcare is in many aspects comparable to the one of
the cardio-vascular system, the research efforts spent on
the latter by far surpass the ones spent on the former.
One of the reasons is most likely the direct relation of
the heart and blood vessels to mortality against which
the enduring morbidity often caused by gastro-intestinal
pathologies is often neglected. As a consequence, compu-
tational modeling of the stomach is so far one of the most
underrated fields of computational biomechanics. Thus,
for researchers with a background in computational me-
chanics it offers rich opportunities. In the domain of solid
mechanics, these are mainly related to the development
of multi-scale models relating cellular to continuum-scale
processes. In the domain of fluid mechanics, model-
ing the multi-phase flow of the digesta as well as fluid-
structure interactions between the digesta and the gastric
wall are promising areas of research. Computer simula-
tions of these aspects can not only help to understand
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certain physiological foundations of our digestion and
pathologies related to it for the first time but also form
the basis for software tools that may be used in future
computer-assisted bariatric surgeries. For a comprehen-
sive review of the state of the art in gastric mechanics,
the reader is referred to [6].
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