
Report
winter 2020:  No. 13 

QuaLiPerF – Multi-X Liver Modelling
Tim Ricken, Lena Lambers, Bruno Christ, Uta Dahmen, 
Karl-Heinz Herrmann, Matthias König, Manja Marz, 
Nicole Radde, Jürgen R. Reichenbach, Lars Ole Schwen, 
Hans-Michael Tautenhahn

Simulating Clinically Relevant Cases 
in Cardiology via Numerical Tools
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terial parameters throughout some regions of the biventricle,

shown in Figure 4, so that the tissue becomes more stiff, the

contractility is diminished, the action potential duration is in-

creased and the conduction velocity is considerably reduced.

Hence, this region turns into an obstacle for the propagating

electrical waves and contracts weakly. The result is a dys-

function of the ventricles, which is indicated by the prolonged

QRS complex (144 ms) in the ECG and the low LV EF (29

%) in the volume-time (v-t) diagram, see the first two cycles

in Figure 5. In order to improve the cardiac output, we start

applying the CRT with the cycle beginning at time t = 1700
ms throughout three subsequent cycles in terms of an outflux

to a small region on the endocardial surface of the right ven-

tricle and an influx to a small region on the epicardial surface

of the LV free wall, see Figure 4 (right) for the pacing sites.

Upon the CRT, we achieve notable improvements in the car-

diac function. The QRS complex is shortened to 122 ms and

an elevation of 17 ml in SV and 9% in EF of the LV is ob-

served, which could be considered a desirable improvement

of cardiac systolic function in clinical routine. Note that upon

the application of the CRT, a significantly different morphol-

ogy in the ECG appears due to the altered pattern of elec-

trical wave propagation. For instance, as the depolarization

wave front propagates from the base to the apex, it suddenly

changes its orientation for a short time to the opposite direc-

tion, which is displayed as a zigzag in the QRS complex. In

addition, we observe a smaller T-wave amplitude implying a

slower repolarization process of the ventricles due to the al-

tered restitution properties. At the end, we stop applying the

external electrical field after three cardiac cycles and begin-

ning from time t = 4100 ms, the ECG morphology and LV

v-t relation turn back to their initial values as those before the

CRT is applied. A more detailed discussion of CRT simula-

tion and its comparison to the healthy case can be found in

[5].

Figure 4: Illustration of the infarcted zone from different

views and the pacing sites during the CRT attempts. The

regions in red colour are infarcted while the healthy regions

have blue colour. In the second view (right), the green and red

crosses depict the influx and outflux sites, respectively, during

the CRT.

3.3 Commotio cordis and precordial thump

Though rare, one can experience a life-threatening arrhythmia

leading to sudden cardiac death although there is no sign of

cardiac disease [14]. This event can simply originate from a

moderate impact to the chest which causes an abnormal defor-

mation of the heart. The result is the generation of unexpected

electrical stimuli through stretch-activated ion-channels (i.e.

MEF) which disturb the regular rhythm of the heart. This phe-

nomenon is mostly seen in young athletes playing e.g. base-

ball or ice hokey, where there is a high risk of an impact to the

chest. In case of such an arrhythmia, an immediate applica-

tion of a defibrillator device increases the chance of survival.

However, in the absence of a defibrillator, a moderate impact

to the chest, which is known as precordial thump, might be an

effective intervention to terminate the irregular heart rhythm.

These phenomena are mimicked with our numerical frame-

work in the biventricle model and the results are presented in

Figure 6. The regular excitation-contraction coupling is dis-

turbed by a blunt impact to the precordial LV region, noted as

1st impact in the ECG. Observe that the mechanical impact is

applied within the time period where the ventricles are vulner-

able to arrhythmia, as done in the first example in which we

induce arrhythmia via external stimuli. Thereafter, the ECG

indicates a chaotic wave propagation in the ventricles. Con-

sequently, the heart cannot pump blood as manifested in the

LV v-t diagram. Nearly 3.7 seconds after the beginning of the

arrhythmia, we apply a second mechanical impact, noted as

2nd impact in the ECG, causing stretch activated ion-channels

to generate another electrical stimulus which eventually be-

comes an obstacle for the arrhythmia and terminates it.

3.4 Application of a drug: verapamil

In this example, we demonstrate the application of a drug

called verapamil which is known as a calcium channel

blocker. Verapamil is often used to treat patients having hy-

pertension, high ventricular rate and chest pain. It takes ef-

fect by blocking certain ion channels on the cell membrane,

which leads to reducing the muscle contractility as a result of

diminished intracellular calcium concentration, so that blood

vessels are dilated and the load on the heart is lowered. Ac-

cordingly, the heart relaxes and does not have to pump the

blood so strongly.

In order to study the effect of verapamil on the electrome-

chanical behaviour of the ventricles, we consider a control

case and two drug cases with different concentrations of vera-

pamil. Different from the previous examples, the cardiac elec-

trophysiology is described by the ionic model of ten Tusscher

et al. [17] and a personalized LV model from echo is used in

the simulations, see Figure 7. The results of the simulations

are presented in terms of an ECG and a v-t relation for each

case in Figure 8.

The control simulation displays a regular ECG with a sat-

isfactory duration of the QRS and QT intervals. Moreover, an

EF of 69 % is measured. These markers indicate a physio-

logical range for the electrophysiology and the mechanics of

the LV behaviour. On the other hand, when a verapamil con-

centration of 100 nM is applied, repolarization occurrs earlier

and more uniformly causing a smaller QT interval and a re-

duction in the magnitude of the T-wave. Besides, verapamil

suppresses the contractility, i.e. the active stretch, leading to a

reduced EF of 58 % and a decrease in the duration of ventric-

ular contraction (systole).

Furthermore, the larger concentration of verapamil with

1500 nM makes the repolarization and end-systole occur

much earlier. The QT interval decreases significantly and the

T-wave is inverted. In addition, a low EF of 35 % is obtained

along with a much reduced systole duration. Furthermore, the

duration of the QRS complex remains constant, while its mag-

nitude decreases for higher concentrations of verapamil. The

tendency observed in the ECGs and v-t relations can be ex-

plained as follows. The action potential duration of myocytes

is reduced as the concentration of verapamil is increased. This

causes an abbreviated QT interval and also affects the action

potential duration dispersion leading to the smaller and in-

verted T-wave. Additionally, verapamil lowers the magnitude

of the active stretch, resulting in a smaller EF.

short axis view 2 chamber view

3 chamber view 4 chamber view

Figure 7: The steps of the virtual LV model generation from

4D echo data. From left to right, segmentation of the endo-

cardial and epicardial surfaces at end-diastole, construction of

the endocardial and epicardial frame through the coordinates

obtained from the segmentation, creation of surface elements

over the endocardium and epicardium, creation of surface el-

ements over the basal region in order to obtain a closed vol-

ume and unification of all surface elements in order to create

a solid LV geometry.
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Figure 8: Illustration of the application of two concentrations

of verapamil (cverap = 100 and 1500 nM) and its compari-

sion to the control case (cverap = 0 nM). The graph presents

the ECG, normalized voltage, (upper curves) and v-t diagram

(lower curves).

0 1300cell density [mm-3]

w17 w24 w30 w34
gestational weeks

Figure 3: Exemplary evolution of the cell density field and cortical folding. The simulation (top row) well cap-
tures the evolving surface pattern shown on magnetic resonance images of the developing fetal brain (bottom row),
adapted from [18].
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Figure 4: The temporal evolution of cell density, von Mises stress, radial, and tangential growth factors estimated
at the green and yellow points in Figure 3 corresponding to gyri and sulci, respectively.

3.2 Constitutive equations

Mathematically, we formulate the flux term that appears
in equations (4) and (5) by using a convection-diffusion

equation,

qc = −cH(c; γ)v(x) + dcc ·∇x c, (7)

can be decomposed multiplicatively via

F = FeFa (4)

into an inelastic part Fa representing the load-free state
of the tissue in the presence of a certain muscular ten-
sion, and a remaining elastic part Fe. The latter ensures
geometric compatibility of the deformation of the stom-
ach as a whole, and the strain energy W in Eq. (1) solely
depends on this elastic part. The first active strain model
of the gastric wall stress was introduced by [7], using

Fa = I− γ(αcNc ⊗Nc +αlNl ⊗Nl)+ γnNn ⊗Nn. (5)

Here, Nc, Nl and Nn are the circumferential, longitu-
dinal and wall-thickness direction of the gastric wall,
respectively, and αc, αl are material parameters. The
excitation-contraction coupling is realized by the acti-
vation parameter γ via a Heaviside-type function γ =
γ(vm), where γn ensures incompressibility of the tissue
under contraction. A finite element simulation of the
gastric wall as a coupled system including the propaga-
tion of electric slow waves, the passive elasticity, and the
active muscular tension (controlled by the electric slow
waves) is presented in Figure 4. For more detailed mod-
els of the active muscle tension in the gastro-intestinal
wall, the reader is referred to [20, 15].

Figure 4: Computational active strain electromechani-
cal model of and idealized cylindrical stomach geometry
showing travelling phasic contraction waves of peristal-
sis, adapted from [7], licensed under CC BY 4.0 (cre-
ativecommons.org/licenses/by/4.0/legalcode)

6 Multi-phase flow of digesta

Mixing and grinding of the digesta in the stomach has
been simulated so far only on the basis of highly sim-
plified Newtonian or Non-Newtonian fluid models [11].
In reality, however, digesta are typically complex multi-
phasic materials consisting of one or several fluid phases
as well as of one or several solid phases, for example,

food particles that are mechanically and chemically de-
graded in the stomach. Computational modeling of these
aspects can help to understand the mechanical aspects
and possibly also origins of certain gastric pathologies.
It appears that much could be achieved in the future in
this area of biomechanics by simply transferring progress
that has been made in other areas of computational fluid
mechanics over the past two decades to the specific prob-
lem of gastric mechanics.

7 Fluid-structure interactions

So far there is only a very limited number of studies of
the fluid mechanics of the digesta in the stomach. These
studies are not only limited to simple fluid models but
additionally they all prescribe the motion of the gastric
wall in a rigid form. Fluid-structure interactions between
the digesta and the elastic gastric wall have not yet been
modeled. It is well-known that these play key roles in
the process of digestion in general and also in the com-
plex hormonal control loops regulating food intake in
particular. However, computational modeling of fluid-
structure interactions in the stomach is much more chal-
lenging than, for example, in arteries or also the heart.
The reasons for this are the extreme deformations of the
stomach during ingestion and digestion of food and more-
over also the above-mentioned multi-phase character of
the digesta. The development of computational models
overcoming these difficulties is a promising area of in-
vestigation for researchers with a strong background in
fluid-structure interactions and computational fluid dy-
namics.

8 Conclusions

While the importance of the gastro-intestinal tract for
healthcare is in many aspects comparable to the one of
the cardio-vascular system, the research efforts spent on
the latter by far surpass the ones spent on the former.
One of the reasons is most likely the direct relation of
the heart and blood vessels to mortality against which
the enduring morbidity often caused by gastro-intestinal
pathologies is often neglected. As a consequence, compu-
tational modeling of the stomach is so far one of the most
underrated fields of computational biomechanics. Thus,
for researchers with a background in computational me-
chanics it offers rich opportunities. In the domain of solid
mechanics, these are mainly related to the development
of multi-scale models relating cellular to continuum-scale
processes. In the domain of fluid mechanics, model-
ing the multi-phase flow of the digesta as well as fluid-
structure interactions between the digesta and the gastric
wall are promising areas of research. Computer simula-
tions of these aspects can not only help to understand

Figure 1: Schematic illustration of early brain development and neurogenesis, as well as neuronal connectivity
resulting in cortical folding.

To link cellular processes, such as cell division in the
inner brain layers, cell migration along radial glial cell
fibers, and tangential migration of interneurons, with
macroscopic growth and folding, recent studies have pro-
posed to introduce the cell density as an additional scalar
field c0, which is kept in balance through the cell density
source Rc representing cell division, and the cell density
flux Qc representing cell migration [28, 16].
We then additionally solve the balance of mass [17],
which, in the reference configuration B0, is given by

ċ0 = DivQc +Rc, (4)

while the corresponding equation in the spatial configu-
ration Bt reads

J̇

J
c+ ċ = div qc + rc, (5)

where J is the Jacobian J = detF , and qc and rc are
the spatial cell density flux and source, respectively [16].
We further couple the cell density problem with volume
growth through a cell-density-dependent growth multi-
plier

ϑ⊥ =
[
1 + κ⊥ c

]α
ϑ� =

[
1 + κ� c

]α
, (6)

where κ⊥ and κ� denote the scalar-valued, spatially vary-
ing tangential and radial growth factors, and α denotes
the growth exponent [16].
This approach enables us to explicitly predict how dis-
ruptions on the cellular level affect growth, folding, and
structural abnormalities on the continuum scale.
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Figure 2: Kinematics of finite growth based on the mul-
tiplicative decomposition of the deformation gradient F
into an elastic part F e and a growth part F g. The de-
formation map φ maps tissue at position X in the un-
deformed, ungrown reference configuration B0 to its new
position x = ϕ(X, t) in the spatial, grown and deformed
configuration Bt. The growth tensor F g maps tissue from
the reference configuration to a stress-free configuration
after growth Bg and is coupled to cell division, migration
and diffusion through cell-density-dependent tangential
and radial growth multipliers ϑ⊥ and ϑ�, wherein the
cell density c is introduced as an additional field with its
reference distribution c0(X).
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terial parameters throughout some regions of the biventricle,

shown in Figure 4, so that the tissue becomes more stiff, the

contractility is diminished, the action potential duration is in-

creased and the conduction velocity is considerably reduced.

Hence, this region turns into an obstacle for the propagating

electrical waves and contracts weakly. The result is a dys-

function of the ventricles, which is indicated by the prolonged

QRS complex (144 ms) in the ECG and the low LV EF (29

%) in the volume-time (v-t) diagram, see the first two cycles

in Figure 5. In order to improve the cardiac output, we start

applying the CRT with the cycle beginning at time t = 1700
ms throughout three subsequent cycles in terms of an outflux

to a small region on the endocardial surface of the right ven-

tricle and an influx to a small region on the epicardial surface

of the LV free wall, see Figure 4 (right) for the pacing sites.

Upon the CRT, we achieve notable improvements in the car-

diac function. The QRS complex is shortened to 122 ms and

an elevation of 17 ml in SV and 9% in EF of the LV is ob-

served, which could be considered a desirable improvement

of cardiac systolic function in clinical routine. Note that upon

the application of the CRT, a significantly different morphol-

ogy in the ECG appears due to the altered pattern of elec-

trical wave propagation. For instance, as the depolarization

wave front propagates from the base to the apex, it suddenly

changes its orientation for a short time to the opposite direc-

tion, which is displayed as a zigzag in the QRS complex. In

addition, we observe a smaller T-wave amplitude implying a

slower repolarization process of the ventricles due to the al-

tered restitution properties. At the end, we stop applying the

external electrical field after three cardiac cycles and begin-

ning from time t = 4100 ms, the ECG morphology and LV

v-t relation turn back to their initial values as those before the

CRT is applied. A more detailed discussion of CRT simula-

tion and its comparison to the healthy case can be found in

[5].

Figure 4: Illustration of the infarcted zone from different

views and the pacing sites during the CRT attempts. The

regions in red colour are infarcted while the healthy regions

have blue colour. In the second view (right), the green and red

crosses depict the influx and outflux sites, respectively, during

the CRT.

3.3 Commotio cordis and precordial thump

Though rare, one can experience a life-threatening arrhythmia

leading to sudden cardiac death although there is no sign of

cardiac disease [14]. This event can simply originate from a

moderate impact to the chest which causes an abnormal defor-

mation of the heart. The result is the generation of unexpected

electrical stimuli through stretch-activated ion-channels (i.e.

MEF) which disturb the regular rhythm of the heart. This phe-

nomenon is mostly seen in young athletes playing e.g. base-

ball or ice hokey, where there is a high risk of an impact to the

chest. In case of such an arrhythmia, an immediate applica-

tion of a defibrillator device increases the chance of survival.

However, in the absence of a defibrillator, a moderate impact

to the chest, which is known as precordial thump, might be an

effective intervention to terminate the irregular heart rhythm.

These phenomena are mimicked with our numerical frame-

work in the biventricle model and the results are presented in

Figure 6. The regular excitation-contraction coupling is dis-

turbed by a blunt impact to the precordial LV region, noted as

1st impact in the ECG. Observe that the mechanical impact is

applied within the time period where the ventricles are vulner-

able to arrhythmia, as done in the first example in which we

induce arrhythmia via external stimuli. Thereafter, the ECG

indicates a chaotic wave propagation in the ventricles. Con-

sequently, the heart cannot pump blood as manifested in the

LV v-t diagram. Nearly 3.7 seconds after the beginning of the

arrhythmia, we apply a second mechanical impact, noted as

2nd impact in the ECG, causing stretch activated ion-channels

to generate another electrical stimulus which eventually be-

comes an obstacle for the arrhythmia and terminates it.

3.4 Application of a drug: verapamil

In this example, we demonstrate the application of a drug

called verapamil which is known as a calcium channel

blocker. Verapamil is often used to treat patients having hy-

pertension, high ventricular rate and chest pain. It takes ef-

fect by blocking certain ion channels on the cell membrane,

which leads to reducing the muscle contractility as a result of

diminished intracellular calcium concentration, so that blood

vessels are dilated and the load on the heart is lowered. Ac-

cordingly, the heart relaxes and does not have to pump the

blood so strongly.

In order to study the effect of verapamil on the electrome-

chanical behaviour of the ventricles, we consider a control

case and two drug cases with different concentrations of vera-

pamil. Different from the previous examples, the cardiac elec-

trophysiology is described by the ionic model of ten Tusscher

et al. [17] and a personalized LV model from echo is used in

the simulations, see Figure 7. The results of the simulations

are presented in terms of an ECG and a v-t relation for each

case in Figure 8.

The control simulation displays a regular ECG with a sat-

isfactory duration of the QRS and QT intervals. Moreover, an

EF of 69 % is measured. These markers indicate a physio-

logical range for the electrophysiology and the mechanics of

the LV behaviour. On the other hand, when a verapamil con-
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Figure 3: Exemplary evolution of the cell density field and cortical folding. The simulation (top row) well cap-
tures the evolving surface pattern shown on magnetic resonance images of the developing fetal brain (bottom row),
adapted from [18].
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Figure 4: The temporal evolution of cell density, von Mises stress, radial, and tangential growth factors estimated
at the green and yellow points in Figure 3 corresponding to gyri and sulci, respectively.

3.2 Constitutive equations

Mathematically, we formulate the flux term that appears
in equations (4) and (5) by using a convection-diffusion

equation,

qc = −cH(c; γ)v(x) + dcc ·∇x c, (7)

can be decomposed multiplicatively via

F = FeFa (4)

into an inelastic part Fa representing the load-free state
of the tissue in the presence of a certain muscular ten-
sion, and a remaining elastic part Fe. The latter ensures
geometric compatibility of the deformation of the stom-
ach as a whole, and the strain energy W in Eq. (1) solely
depends on this elastic part. The first active strain model
of the gastric wall stress was introduced by [7], using

Fa = I− γ(αcNc ⊗Nc +αlNl ⊗Nl)+ γnNn ⊗Nn. (5)

Here, Nc, Nl and Nn are the circumferential, longitu-
dinal and wall-thickness direction of the gastric wall,
respectively, and αc, αl are material parameters. The
excitation-contraction coupling is realized by the acti-
vation parameter γ via a Heaviside-type function γ =
γ(vm), where γn ensures incompressibility of the tissue
under contraction. A finite element simulation of the
gastric wall as a coupled system including the propaga-
tion of electric slow waves, the passive elasticity, and the
active muscular tension (controlled by the electric slow
waves) is presented in Figure 4. For more detailed mod-
els of the active muscle tension in the gastro-intestinal
wall, the reader is referred to [20, 15].

Figure 4: Computational active strain electromechani-
cal model of and idealized cylindrical stomach geometry
showing travelling phasic contraction waves of peristal-
sis, adapted from [7], licensed under CC BY 4.0 (cre-
ativecommons.org/licenses/by/4.0/legalcode)

6 Multi-phase flow of digesta

Mixing and grinding of the digesta in the stomach has
been simulated so far only on the basis of highly sim-
plified Newtonian or Non-Newtonian fluid models [11].
In reality, however, digesta are typically complex multi-
phasic materials consisting of one or several fluid phases
as well as of one or several solid phases, for example,

food particles that are mechanically and chemically de-
graded in the stomach. Computational modeling of these
aspects can help to understand the mechanical aspects
and possibly also origins of certain gastric pathologies.
It appears that much could be achieved in the future in
this area of biomechanics by simply transferring progress
that has been made in other areas of computational fluid
mechanics over the past two decades to the specific prob-
lem of gastric mechanics.

7 Fluid-structure interactions

So far there is only a very limited number of studies of
the fluid mechanics of the digesta in the stomach. These
studies are not only limited to simple fluid models but
additionally they all prescribe the motion of the gastric
wall in a rigid form. Fluid-structure interactions between
the digesta and the elastic gastric wall have not yet been
modeled. It is well-known that these play key roles in
the process of digestion in general and also in the com-
plex hormonal control loops regulating food intake in
particular. However, computational modeling of fluid-
structure interactions in the stomach is much more chal-
lenging than, for example, in arteries or also the heart.
The reasons for this are the extreme deformations of the
stomach during ingestion and digestion of food and more-
over also the above-mentioned multi-phase character of
the digesta. The development of computational models
overcoming these difficulties is a promising area of in-
vestigation for researchers with a strong background in
fluid-structure interactions and computational fluid dy-
namics.

8 Conclusions

While the importance of the gastro-intestinal tract for
healthcare is in many aspects comparable to the one of
the cardio-vascular system, the research efforts spent on
the latter by far surpass the ones spent on the former.
One of the reasons is most likely the direct relation of
the heart and blood vessels to mortality against which
the enduring morbidity often caused by gastro-intestinal
pathologies is often neglected. As a consequence, compu-
tational modeling of the stomach is so far one of the most
underrated fields of computational biomechanics. Thus,
for researchers with a background in computational me-
chanics it offers rich opportunities. In the domain of solid
mechanics, these are mainly related to the development
of multi-scale models relating cellular to continuum-scale
processes. In the domain of fluid mechanics, model-
ing the multi-phase flow of the digesta as well as fluid-
structure interactions between the digesta and the gastric
wall are promising areas of research. Computer simula-
tions of these aspects can not only help to understand

Figure 1: Schematic illustration of early brain development and neurogenesis, as well as neuronal connectivity
resulting in cortical folding.

To link cellular processes, such as cell division in the
inner brain layers, cell migration along radial glial cell
fibers, and tangential migration of interneurons, with
macroscopic growth and folding, recent studies have pro-
posed to introduce the cell density as an additional scalar
field c0, which is kept in balance through the cell density
source Rc representing cell division, and the cell density
flux Qc representing cell migration [28, 16].
We then additionally solve the balance of mass [17],
which, in the reference configuration B0, is given by

ċ0 = DivQc +Rc, (4)

while the corresponding equation in the spatial configu-
ration Bt reads

J̇

J
c+ ċ = div qc + rc, (5)

where J is the Jacobian J = detF , and qc and rc are
the spatial cell density flux and source, respectively [16].
We further couple the cell density problem with volume
growth through a cell-density-dependent growth multi-
plier

ϑ⊥ =
[
1 + κ⊥ c

]α
ϑ� =

[
1 + κ� c

]α
, (6)

where κ⊥ and κ� denote the scalar-valued, spatially vary-
ing tangential and radial growth factors, and α denotes
the growth exponent [16].
This approach enables us to explicitly predict how dis-
ruptions on the cellular level affect growth, folding, and
structural abnormalities on the continuum scale.
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Figure 2: Kinematics of finite growth based on the mul-
tiplicative decomposition of the deformation gradient F
into an elastic part F e and a growth part F g. The de-
formation map φ maps tissue at position X in the un-
deformed, ungrown reference configuration B0 to its new
position x = ϕ(X, t) in the spatial, grown and deformed
configuration Bt. The growth tensor F g maps tissue from
the reference configuration to a stress-free configuration
after growth Bg and is coupled to cell division, migration
and diffusion through cell-density-dependent tangential
and radial growth multipliers ϑ⊥ and ϑ�, wherein the
cell density c is introduced as an additional field with its
reference distribution c0(X).
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Special Issue: Computational Continuum Biomechanics

The development in the field of computational simulation based on continuum-biomechanical models has made
considerable progress in recent years.

On the one hand, the models and simulations can be used to obtain a deeper insight into the highly complex
biochemical-physical coupled processes in living tissues. This usually requires high-resolution and in some cases
multi-scale models with a high-fidelity level of detail. The computational effort is correspondingly expensive and
high-resolution large-scale calculations can only be performed in parallel on high-performance computers.

On the other hand, the models are already of such high quality that they provide support for therapy decisions in
clinical practice. This requires both robust and fast calculation methods. This is the goal of the newly established
DFG priority program SPP 2311 ”Robust coupling of continuum-biomechanical in silico models for active biological
systems as a preliminary stage of clinical applications – co-design of modelling, numerics and usability”. The aim is
to develop solution concepts in the co-design of mechanical modelling, numerical solution and medical issue, which
can make a model-based, computer-aided supporting contribution in clinical practice.

This volume presents examples of high-resolution continuum-biomechanical models of the human organs liver, heart,
brain and stomach.

The paper ”Multi-X Modeling of Complex Biological Systems in Health and Disease Using the Liver as a Show-
case” by Tim Ricken, Lena Lambers et al. presents the experiences and challenges of the recently founded Research
Unit QuaLiPerF (FOR 5151). The Research Unit deals with the multiscale modelling of the human liver. Special
attention is given to the integration of physiological data for liver-specific modelling. To achieve successful modelling,
many different disciplines collaborate in QuaLiPerF, including mechanics, bioinformatics, statistics, experimental
animal surgery, cell transplantation, radiology and clinical transplantation.

In the article ”Simulating Clinically Relevant Cases in Cardiology via Numerical Tools” by Baris Cansiz et al.,
the authors give an insight on the finite element-based numerical framework for the simulation of the heart. The
presented computational model enables an application to real-life situations. Here, the authors examine the impact
of different effects, e.g. (de)fibrillation, cardiac resynchronization therapy or the intake of verapamil on the heart
beat showing the cardiac cycle as well as snapshots from representative time steps in the simulation.

The contribution ”Coupling Cellular Brain Development with Cortical Folding” by S. Budday and M. S. Zarzor
deals with the relationship between cellular brain development and cortical folding. The authors investigate the
relationship between mechanical instabilities (leading to cortical formations) to gain better insights into various
neurological disorders. Mechanical instabilities are closely related to cell migration or cellular connectivity. For
this purpose, the authors apply a multi-field computational model (coupling of the advection-diffusion model with
finite growth) to the problem. They can thus demonstrate that computer models based on the nonlinear field
theories of mechanics are a promising tool to transfer processes on the cellular scale to structural changes on the
continuum scale. This approach enables authors to explicitly predict how disturbances at the cellular level affect
growth, folding, and structural anomalies at the continuum scale.

The last article ”Computational Modeling of the Stomach” by R. C. Aydin et al. gives a short overview of
the current state of the art concerning the computational modeling of the gastro-intestinal tract. The authors
divided the topic into five parts to highlight possible topics within each area depending on different backgrounds in
computational mechanics: elasticity of the gastric wall, electric waves in the gastric wall, active muscle tension in
the wall, multi-phase flow of digesta and the fluid-structure interactions.

December 2020
Tim Ricken

Institute of Mechanics, Structural Analysis and Dynamics
Faculty of Aerospace Engineering and Geodesy

University of Stuttgart
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Message of the President

The German Association for Computational Mechanics (GACM) would like to draw the
attention of the readership of this GACM-Report No. 13 to the challenging and fast devel-
oping field of Computational Continuum Biomechanics. Thanks to the efforts of guest editor
Professor Tim Ricken, who’s dedication is acknowledged, four fascinating manuscripts can
be presented illustrating this research. The importance and current momentum of the field
is underlined by the fact that the German Research Foundation (DFG) just established a
national wide Priority Program SPP 2311 on Robust Coupling of Continuum-biomechanical
In Silico Models to Establish Active Biological System Models for Later Use in Clinical Ap-
plications – Co-design of Modelling, Numerics and Usability, which will further foster the
basic research in this field.

Currently, we face in general a challenging situation due to the Covid-19 pandemic. For all of us, life has been
dramatically changed during the last months. The academic and scientific life went nearly totally online instead
of having large conferences or smaller workshops in presence meeting friends and colleagues. Technically, we could
adapt to the new formats relatively fast. Maybe, we even can identify some positive aspects as we do not lose
any time in travelling and more people more easily can join the online formats. These meetings are not virtual
– they are real – even though online. Surely, we all miss the social components and many facets which are less
present in these online gatherings. Nevertheless, for the sake of our safety, we do not have any choice. Maybe our
community is naturally more familiar with these formats due to the fact that virtualization is our daily business
in computational mechanics. Having nowadays the meeting online gives us additional degrees of freedom, reduces
efforts and we can reach more people easily. This experience will help us to develop creative formats for the future.

On 11 December 2020, GACM will hold its regular general assembly including elections – of course online. Thus,
we will continue with our efforts for science and research as well as service to the community. About other events
and the accompanying formats, members should consult the according web pages for an update.

Looking forward towards the upcoming scientific events and stay healthy. I remain with my best regards

Michael Kaliske, President of GACM
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QuaLiPerF – Multi-X Liver Modelling
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Figure 1: Rheology for the electro-visco-elastic response of

the myocardium.

2 Excitation and contraction coupling in my-

ocardial tissue

The electromechanical state of the heart muscle, or in other

words, the myocardium is governed by the balance of lin-

ear momentum and a reaction-diffusion-type equation of ex-

citation either in the monodomain [10] or bidomain setting

[7, 8], depending on the nature of the problem. The cou-

pling between the mechanical and electrical fields is estab-

lished through relations at the constitutive level.

In order to achieve an extensive description of the active

myocardial behaviour, we developed a sophisticated rheol-

ogy considering orthotropic electro-visco-elastic aspects of

the myocardium. As a first step in the development of the

model, the myocardium is deemed as a passive material and a

rheological model that consists of two branches connected in

parallel is considered. One branch is related to the equilibrium

response through an elastic spring and the other branch repre-

sents the non-equilibrium response through a spring+dashpot

element. Regarding the orthotropic viscous properties of the

myocardial tissue, the non-equilibrium part of the free energy

function is additively decomposed into fibre, sheet and normal

directions and each orientation is associated with distinct ma-

terial parameters [6]. Furthermore, this rheology is furnished

with a contractile element only along the fibre direction in or-

der to describe the active tissue response, i.e. the influence

of the electrical excitation on the mechanical field, while the

material response along the sheet and normal directions is as-

sumed to be passive. The resulting setting can be considered

as an extension of the classical Hill model [13] to account for

the viscosity in the three-dimensional space which we name

as the modified Hill model [3], see Figure 1.

The model considers the multiplicative decomposition of

the total deformation gradient into an elastic part F e, a vis-

cous part F v and an active part F a

F = F eF vF a. (1)

The viscous part of the deformation gradient embodies the

orthotropic viscous properties and the active part of the defor-

mation gradient manifests the contractile nature of the heart

tissue. Both of the sub-parts are prescribed according to the

orthotropic properties of the myocardium

F v := 1+ (λv

f − 1)f0 ⊗ f0

+(λv

s − 1)s0 ⊗ s0 + (λv

n − 1)n0 ⊗ n0,

F a := 1+ (λa

f − 1)f0 ⊗ f0.

(2)

Herein, the viscous stretches λv

f , λv

s and λv

n and the active

stretch λa

f are associated with the fibre f0, sheet s0 and nor-

maln0 directions that are assumed to be perpendicular to each

other in the reference state. This assumption further leads to

a multiplicative decomposition of the stretches without any

coupling between the directions λf = λe

f λ
v

f λ
a

f , λs = λe

s λ
v

s and

λn = λe

nλ
v

n , where the superscript e designates the elastic part

of the stretch. The viscous stretches represent the deformation

in the dashpot along three orthogonal directions governed by

the macroscopic deformation, while the active stretch repre-

sents the shortening of the myocardium along the fibre direc-

tion emerging from an alteration in the intracellular calcium

concentration which is formulated in terms of the transmem-

brane potential. Both stretches as well as the intracellular cal-

cium concentration are considered as internal variables in the

framework.

After determining the viscous and active parts of the

stretches, the elastic part of the deformation gradient can be

simply obtained through relation F e = F (F vF a)−1. More-

over, in line with the rheological setting, the total free energy

function is additively decomposed into passive ψ̂p and visco-

active ψ̂va parts

ψ(s;F ,F e) = ψ̂p(s;F ) + ψ̂va(s;F e) (3)

with s = {f0, s0,n0}. Note that this setting comprises the

advantages of both the additive split of the total stress and the

multiplicative decomposition of the total deformation gradi-

ent in the sense of Göktepe et al. [11].

When it comes to the modelling of cardiac electrophys-

iology at the material level, two essential approaches can

be mentioned: ionic and phenomenological models. The

ionic models represent a sophisticated description of the car-

diomyocytes by considering the local evolution of individual

ion species in line with experimental observations, e.g. Ten

Tusscher-Noble-Noble-Panfilov model [17]. These models

are useful when one needs to study the influence of a particu-

lar ion activity on cardiac electrophysiology, e.g. drug appli-

cation. However, a high number of evolution equations for ion

concentrations, ionic currents and gating variables requires a

demanding computational treatment. On the other hand, for

the investigation of electrical wave propagation in healthy and

pathological cases (e.g. arrhythmia, dyssynchrony) on the tis-

sue or organ level, the phenomenological models are conve-

nient due to their easiness of implementation and relatively

reduced computational effort compared to the ionic models.

In this context, the Aliev-Panfilov model [1] is one of most

employed approaches which provides an excellent description

1 Introduction

The initial beat of the human heart occurs in the early stages

of embryo development and continues ceaselessly untill death

of the body. The heart is the core unit of the cardiovascular

system whose task is to sustain a continuous blood circulation

throughout the body, thereby nourishing every single cell with

essential substrates, enabling waste excretion and keeping the

whole system functioning under various conditions (e.g. rest-

ing, training, pregnancy). Hence, any dysfunction in the cir-

culation system might lead to critical conditions such as loss

of standard of living, stroke or even sudden death. Accord-

ing to the World Health Organization, 17.9 million people die

from cardiovascular diseases (CVDs) in the world each year,

which corresponds to 31% of all global deaths. Apart from

deep impact on human life, CVDs cause high a financial bur-

den for the society resulting from direct costs, e.g. medical

care, and indirect costs, e.g. labour force loss, which was

estimated around $ 555 billion in 2015 in the United States.

Unfortunately, mortality and economical side effects of CVDs

are projected to increase over the next 20 years [2].

These harsh facts canalized scientists to understand how a

healthy heart functions and how heart diseases progress with

the aim to achieve robust diagnostic tools and efficient treat-

ment strategies. A huge amount of research groups perform

clinical experiments and trials on humans and animals in or-

der to deepen our understanding of the heart and how CVDs

develop. Undoubtedly, such studies greatly benefit the field

of cardiology. However, the requirement of high budgets,

long follow-up durations, trial and error procedures and ethic

approvals limit the progress [9, 15]. In addition, the repro-

ducibility and generalization of experimental findings are an-

other critical issue. On the clinical side, one is able to assess

the current status of a patient’s cardiac function through non-

invasive techniques, e.g. computer tomography (CT), car-

diac magneto resonance imaging (cMRI), echocardiography

(echo), electrocardiogram (ECG), and invasive techniques,

e.g. blood tests, biopsy, catheterization. However, these di-

agnostic tools cannot provide a complete understanding of

the cardiac function and possible disease progression. One

of the demanding issues is the existence of unique properties

and conditions of each patient’s heart that makes it difficult to

establish a general consensus on diagnosis, possible disease

progression and treatment methodology.

On the other hand, it is a well known fact that the recog-

nition of a disease and its treatment technique for a specific

patient are deduced in the light of a physiologist’s experi-

ence that is naturally subjective to a certain extent and does

not necessarily guarantee the best outcome. It is speculated

that a large number of people are subjected to misdiagnosis,

causing serious health problems, deaths and additional costs

that could have been prevented [12]. Therefore, more effi-

cient diagnostic approaches pinpointing the cause of disease

and precise patient-specific treatment strategies are extremely

desirable in order to reduce the mortality and economical side

effects of heart diseases.

In this context, computing facilities along with advance-

ments in numerical modelling approaches for the heart pro-

vide a promising investigation opportunity. Thanks to numer-

ical developments, it will be feasible to virtually analyze a

patient’s heart, predict possible disease progression patterns

and provide information that is not possible to obtain through

medical monitoring tools alone, e.g. stress distribution in

the intact ventricle. It would be no surprise if the near fu-

ture would witness cardiologists who are educated with ba-

sic engineering knowledge and performing predictive patient-

specific simulations as a clinical routine before making a final

decision on a treatment methodology. Nevertheless, computa-

tional modelling of such a complex organ is not a straightfor-

ward task since various constituents (electrophysiology, con-

traction, boundary conditions, blood flow, valves etc.), which

regulate heart function, have to be considered.

In this contribution, we briefly introduce some important

aspects of our recently established finite element (FE)-based

numerical framework in the context of computational mod-

elling of the heart. Furthermore, we present some elaborate

numerical examples which demonstrate the usability of our

numerical framework for cases encountered in cardiology de-

partments of hospitals.

Simulating Clinically Relevant Cases in Cardiology 
via Numerical Tools
by Barış Cansız, Yongjae Lee, Lucas A. Woodworth & Michael Kaliske

Institute for Structural Analysis, Technische Universität Dresden, Germany
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tional modelling of such a complex organ is not a straightfor-
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regulate heart function, have to be considered.
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Figure 1: Rheology for the electro-visco-elastic response of

the myocardium.

2 Excitation and contraction coupling in my-

ocardial tissue

The electromechanical state of the heart muscle, or in other

words, the myocardium is governed by the balance of lin-

ear momentum and a reaction-diffusion-type equation of ex-

citation either in the monodomain [10] or bidomain setting

[7, 8], depending on the nature of the problem. The cou-

pling between the mechanical and electrical fields is estab-

lished through relations at the constitutive level.

In order to achieve an extensive description of the active

myocardial behaviour, we developed a sophisticated rheol-

ogy considering orthotropic electro-visco-elastic aspects of

the myocardium. As a first step in the development of the

model, the myocardium is deemed as a passive material and a

rheological model that consists of two branches connected in

parallel is considered. One branch is related to the equilibrium

response through an elastic spring and the other branch repre-

sents the non-equilibrium response through a spring+dashpot

element. Regarding the orthotropic viscous properties of the

myocardial tissue, the non-equilibrium part of the free energy

function is additively decomposed into fibre, sheet and normal

directions and each orientation is associated with distinct ma-

terial parameters [6]. Furthermore, this rheology is furnished

with a contractile element only along the fibre direction in or-

der to describe the active tissue response, i.e. the influence

of the electrical excitation on the mechanical field, while the

material response along the sheet and normal directions is as-

sumed to be passive. The resulting setting can be considered

as an extension of the classical Hill model [13] to account for

the viscosity in the three-dimensional space which we name

as the modified Hill model [3], see Figure 1.

The model considers the multiplicative decomposition of

the total deformation gradient into an elastic part F e, a vis-

cous part F v and an active part F a

F = F eF vF a. (1)

The viscous part of the deformation gradient embodies the

orthotropic viscous properties and the active part of the defor-

mation gradient manifests the contractile nature of the heart

tissue. Both of the sub-parts are prescribed according to the
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tion emerging from an alteration in the intracellular calcium

concentration which is formulated in terms of the transmem-

brane potential. Both stretches as well as the intracellular cal-

cium concentration are considered as internal variables in the
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After determining the viscous and active parts of the

stretches, the elastic part of the deformation gradient can be

simply obtained through relation F e = F (F vF a)−1. More-

over, in line with the rheological setting, the total free energy

function is additively decomposed into passive ψ̂p and visco-

active ψ̂va parts

ψ(s;F ,F e) = ψ̂p(s;F ) + ψ̂va(s;F e) (3)

with s = {f0, s0,n0}. Note that this setting comprises the

advantages of both the additive split of the total stress and the

multiplicative decomposition of the total deformation gradi-

ent in the sense of Göktepe et al. [11].

When it comes to the modelling of cardiac electrophys-

iology at the material level, two essential approaches can

be mentioned: ionic and phenomenological models. The

ionic models represent a sophisticated description of the car-

diomyocytes by considering the local evolution of individual

ion species in line with experimental observations, e.g. Ten

Tusscher-Noble-Noble-Panfilov model [17]. These models

are useful when one needs to study the influence of a particu-

lar ion activity on cardiac electrophysiology, e.g. drug appli-

cation. However, a high number of evolution equations for ion

concentrations, ionic currents and gating variables requires a

demanding computational treatment. On the other hand, for

the investigation of electrical wave propagation in healthy and

pathological cases (e.g. arrhythmia, dyssynchrony) on the tis-

sue or organ level, the phenomenological models are conve-

nient due to their easiness of implementation and relatively

reduced computational effort compared to the ionic models.

In this context, the Aliev-Panfilov model [1] is one of most

employed approaches which provides an excellent description
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iology at the material level, two essential approaches can

be mentioned: ionic and phenomenological models. The

ionic models represent a sophisticated description of the car-

diomyocytes by considering the local evolution of individual

ion species in line with experimental observations, e.g. Ten

Tusscher-Noble-Noble-Panfilov model [17]. These models

are useful when one needs to study the influence of a particu-

lar ion activity on cardiac electrophysiology, e.g. drug appli-

cation. However, a high number of evolution equations for ion

concentrations, ionic currents and gating variables requires a

demanding computational treatment. On the other hand, for

the investigation of electrical wave propagation in healthy and

pathological cases (e.g. arrhythmia, dyssynchrony) on the tis-

sue or organ level, the phenomenological models are conve-

nient due to their easiness of implementation and relatively

reduced computational effort compared to the ionic models.

In this context, the Aliev-Panfilov model [1] is one of most

employed approaches which provides an excellent description

of myocyte excitation. The model is able to mimic the intrin-

sic characteristics of the transmembrane potential and lumps

the influence of all ionic currents in a single slow recovery

variable. Within this contribution, both of the aforementioned

models are employed.

Moreover, a mechanical deformation causing a myocardial

elongation can induce an additional ion transmission through

the membrane that might alter the electrical activity of the

myocardium and this phenomenon is called mechano-electric

feedback (MEF). MEF is often described by a simple equation

that is a linear function of the stretch along the fibre direction

in accordance with the experimental observations [16].
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Simulating Clinically Relevant Cases in Cardiology via Numerical Tools

3 Application of the numerical framework to

real-life situations

Figure 2: Generation of a virtual biventricular model from

cMRI data. From left to right, segmentation of the left ven-

tricle (LV) endocardial and epicardial wall at end-diastole on

one of the slices in the short axis view, construction of the

frame through the coordinates obtained from the segmenta-

tion, creation of truss elements over the boundaries, creation

of surface elements over the boundaries and creation of 3D

solid by unifying all surface elements on the boundary. The

right ventricle is generated by following the same steps and

is then unified with the LV to obtain the virtual biventricular

heart model.

3.1 Fibrillation and defibrillation

One of the important pathologies encountered in cardiology

departments is rhythm disorders, e.g., fibrillation, braycar-

dia and tachycardia. Among them, ventricular fibrillation ne-

cessitates an urgent intervention since the heart cannot pump

blood anymore and death or permanent damage can occur in

a couple of minutes. Applying an external electrical field,

which is often called defibrillation, is a frequently utilized ef-

fective technique to terminate the chaotic electrical activity.

The aim is to constitute an electric circuit in the cardiac tissue

through which the currents propagate and to bring the chaotic

electrical activity to an end.

In the following, an FE simulation of a virtualized biven-

tricular heart model is demonstrated where regular beat,

arrhythmia and recovery of the regular beat by applying

an external shock are mimicked. Moreover, an ECG is

recorded during the entire simulation which is one of the

most frequently utilized diagnostic tools, since it can be non-

invasively and immediately obtained and guide cardiologists

to reveal the abnormalities in electrical activity and contrac-

tion of the heart. The virtual biventricular heart model is

generated from a cMRI of a 38-year old healthy volunteer’s

(male) biventricles, see Figure 2. In the simulation, the me-

chanical field is not considered. The interested reader is re-

ferred to [4] for a more extensive (de)fibrillation example in-

cluding the mechanical field.

The snapshots belonging to the numerical analysis are

demonstrated in Figure 3 along with the graph depicting the

ECG. The excitation of the ventricles is initiated with depolar-

ization of the atrioventricular node and the first regular cardiac

cycle is presumed to start at time t = 100 ms. In the following

cycle beginning at time t = 900 ms, after the ventricles start

to go through the repolarization phase, an arrhythmia is in-

duced by injecting an extra current to the material points that

stand in the tail of the repolarizing wave, see the snapshot at

time t = 1314 ms. The applied external stimulus also reveals

itself on the T-wave segment in the ECG, where the ventricles

are vulnerable to an arrhythmia. After destroying the regu-

lar heart rhythm, a clear manifestation of the reentrant scroll

wave is present in the snapshots. On the other hand, disor-

dered deflections are observed with changing magnitude and

formation in the ECG, which also indicates a fibrillatory state

of the ventricles. In clinical routine, such a diagnosis would

be swiftly treated by applying an external shock.

In order to mimic this phenomenon, an electrical field is

generated by applying an outflux and an influx to a small re-

gion on the LV epicardium and the LV endocardium, respec-

tively, in the time interval t ∈ [3410, 3460]. Upon the applied

shock, the chaotic electrical wave propagation, i.e. arrhyth-

mia, is terminated and the ventricles go into a completely

repolarized state. Thereafter, the ventricles are again depo-

larized from the atrioventricular node at time t = 4100 ms.

Observe that an inverse T-wave in the ECG, indicating an ab-

normal transmembrane potential distribution, is displayed in

the cycle right after the defibrillation. This electrical irregu-

larity undoubtedly arises from the perturbed restitution prop-

erties of the myocardium during the arrhythmia. However, the

restitution properties and usual transmembrane potential dis-

tribution are recovered and the ECG takes its regular shape as

the ventricles are further excited.

3.2 Cardiac resynchronization therapy

Another serious pathological condition of the heart is ventric-

ular dyssynchrony which occurs most likely due to abnormal

electrical conduction. For example, left or right bundle branch

block, scar tissue, infarcted regions or cardiomyopathy might

result in irregular electrical wave propagation leading to un-

synchronized mechanical activations, unusual loading condi-

tions and deformations of the myocardium. In most cases,

the result is unfortunately heart failure. This pathology is of-

ten manifested as a long QRS duration (> 130 ms) in ECG

and a considerably diminished LV ejection fraction (EF). In

such cases, cardiac resynchronization therapy (CRT) is one of

the most frequently used treatment methodologies for patients

having reduced cardiac pump function.

The idea behind CRT is to deliver electrical pulses to spe-

cific regions in the heart, thereby synchronizing the contrac-

tion and increasing the cardiac output. In this example, we

mimic CRT in the virtualized biventricle model and demon-

strate how we improve the cardiac function by applying ex-

ternal electrical pulses in computer simulation. In the simula-

tion, both electrical and mechanical fields are considered.

In the model, dyssynchrony is induced by altering the ma-
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terial parameters throughout some regions of the biventricle,

shown in Figure 4, so that the tissue becomes more stiff, the

contractility is diminished, the action potential duration is in-

creased and the conduction velocity is considerably reduced.

Hence, this region turns into an obstacle for the propagating

electrical waves and contracts weakly. The result is a dys-

function of the ventricles, which is indicated by the prolonged

QRS complex (144 ms) in the ECG and the low LV EF (29

%) in the volume-time (v-t) diagram, see the first two cycles

in Figure 5. In order to improve the cardiac output, we start

applying the CRT with the cycle beginning at time t = 1700
ms throughout three subsequent cycles in terms of an outflux

to a small region on the endocardial surface of the right ven-

tricle and an influx to a small region on the epicardial surface

of the LV free wall, see Figure 4 (right) for the pacing sites.

Upon the CRT, we achieve notable improvements in the car-

diac function. The QRS complex is shortened to 122 ms and

an elevation of 17 ml in SV and 9% in EF of the LV is ob-

served, which could be considered a desirable improvement

of cardiac systolic function in clinical routine. Note that upon

the application of the CRT, a significantly different morphol-

ogy in the ECG appears due to the altered pattern of elec-

trical wave propagation. For instance, as the depolarization

wave front propagates from the base to the apex, it suddenly

changes its orientation for a short time to the opposite direc-

tion, which is displayed as a zigzag in the QRS complex. In

addition, we observe a smaller T-wave amplitude implying a

slower repolarization process of the ventricles due to the al-

tered restitution properties. At the end, we stop applying the

external electrical field after three cardiac cycles and begin-

ning from time t = 4100 ms, the ECG morphology and LV

v-t relation turn back to their initial values as those before the

CRT is applied. A more detailed discussion of CRT simula-

tion and its comparison to the healthy case can be found in

[5].

Figure 4: Illustration of the infarcted zone from different

views and the pacing sites during the CRT attempts. The

regions in red colour are infarcted while the healthy regions

have blue colour. In the second view (right), the green and red

crosses depict the influx and outflux sites, respectively, during

the CRT.

3.3 Commotio cordis and precordial thump

Though rare, one can experience a life-threatening arrhythmia

leading to sudden cardiac death although there is no sign of

cardiac disease [14]. This event can simply originate from a

moderate impact to the chest which causes an abnormal defor-

mation of the heart. The result is the generation of unexpected

electrical stimuli through stretch-activated ion-channels (i.e.

MEF) which disturb the regular rhythm of the heart. This phe-

nomenon is mostly seen in young athletes playing e.g. base-

ball or ice hokey, where there is a high risk of an impact to the

chest. In case of such an arrhythmia, an immediate applica-

tion of a defibrillator device increases the chance of survival.

However, in the absence of a defibrillator, a moderate impact

to the chest, which is known as precordial thump, might be an

effective intervention to terminate the irregular heart rhythm.

These phenomena are mimicked with our numerical frame-

work in the biventricle model and the results are presented in

Figure 6. The regular excitation-contraction coupling is dis-

turbed by a blunt impact to the precordial LV region, noted as

1st impact in the ECG. Observe that the mechanical impact is

applied within the time period where the ventricles are vulner-

able to arrhythmia, as done in the first example in which we

induce arrhythmia via external stimuli. Thereafter, the ECG

indicates a chaotic wave propagation in the ventricles. Con-

sequently, the heart cannot pump blood as manifested in the

LV v-t diagram. Nearly 3.7 seconds after the beginning of the

arrhythmia, we apply a second mechanical impact, noted as

2nd impact in the ECG, causing stretch activated ion-channels

to generate another electrical stimulus which eventually be-

comes an obstacle for the arrhythmia and terminates it.

3.4 Application of a drug: verapamil

In this example, we demonstrate the application of a drug

called verapamil which is known as a calcium channel

blocker. Verapamil is often used to treat patients having hy-

pertension, high ventricular rate and chest pain. It takes ef-

fect by blocking certain ion channels on the cell membrane,

which leads to reducing the muscle contractility as a result of

diminished intracellular calcium concentration, so that blood

vessels are dilated and the load on the heart is lowered. Ac-

cordingly, the heart relaxes and does not have to pump the

blood so strongly.

In order to study the effect of verapamil on the electrome-

chanical behaviour of the ventricles, we consider a control

case and two drug cases with different concentrations of vera-

pamil. Different from the previous examples, the cardiac elec-

trophysiology is described by the ionic model of ten Tusscher

et al. [17] and a personalized LV model from echo is used in

the simulations, see Figure 7. The results of the simulations

are presented in terms of an ECG and a v-t relation for each

case in Figure 8.

The control simulation displays a regular ECG with a sat-

isfactory duration of the QRS and QT intervals. Moreover, an

EF of 69 % is measured. These markers indicate a physio-

logical range for the electrophysiology and the mechanics of

the LV behaviour. On the other hand, when a verapamil con-
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Figure 5: Demonstration of cardiac cycles without and with CRT in the dyssynchronous model. In the snapshots, the trans-

membrane potential distribution is shown and the graph presents the ECG, normalized voltage (upper curve), and LV v-t

diagram, normalized volume (lower curve), recorded during the simulation. Moreover, the QRS duration, stroke volume (SV)

and EF are given for each cycle.
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centration of 100 nM is applied, repolarization occurrs earlier

and more uniformly causing a smaller QT interval and a re-

duction in the magnitude of the T-wave. Besides, verapamil

suppresses the contractility, i.e. the active stretch, leading to a

reduced EF of 58 % and a decrease in the duration of ventric-

ular contraction (systole).

Furthermore, the larger concentration of verapamil with

1500 nM makes the repolarization and end-systole occur

much earlier. The QT interval decreases significantly and the

T-wave is inverted. In addition, a low EF of 35 % is obtained

along with a much reduced systole duration. Furthermore, the

duration of the QRS complex remains constant, while its mag-

nitude decreases for higher concentrations of verapamil. The

tendency observed in the ECGs and v-t relations can be ex-

plained as follows. The action potential duration of myocytes

is reduced as the concentration of verapamil is increased. This

causes an abbreviated QT interval and also affects the action

potential duration dispersion leading to the smaller and in-

verted T-wave. Additionally, verapamil lowers the magnitude

of the active stretch, resulting in a smaller EF.

short axis view 2 chamber view

3 chamber view 4 chamber view

Figure 7: The steps of the virtual LV model generation from

4D echo data. From left to right, segmentation of the endo-

cardial and epicardial surfaces at end-diastole, construction of

the endocardial and epicardial frame through the coordinates

obtained from the segmentation, creation of surface elements

over the endocardium and epicardium, creation of surface el-

ements over the basal region in order to obtain a closed vol-

ume and unification of all surface elements in order to create

a solid LV geometry.
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Figure 8: Illustration of the application of two concentrations

of verapamil (cverap = 100 and 1500 nM) and its compari-

sion to the control case (cverap = 0 nM). The graph presents

the ECG, normalized voltage, (upper curves) and v-t diagram

(lower curves).
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Figure 6: Demonstration of commotio cordis and precordial thump. In the snapshots, the transmembrane potential distribution

is shown and the graph presents the ECG, normalized voltage, and LV v-t diagram, normalized volume (lower curve), recorded

during the simulation. Note that the snapshots at time t = 1260 ms and t = 4970 ms are taken at different views in order to

make the mechanical impact more visible.
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centration of 100 nM is applied, repolarization occurrs earlier

and more uniformly causing a smaller QT interval and a re-

duction in the magnitude of the T-wave. Besides, verapamil

suppresses the contractility, i.e. the active stretch, leading to a

reduced EF of 58 % and a decrease in the duration of ventric-

ular contraction (systole).

Furthermore, the larger concentration of verapamil with

1500 nM makes the repolarization and end-systole occur

much earlier. The QT interval decreases significantly and the

T-wave is inverted. In addition, a low EF of 35 % is obtained

along with a much reduced systole duration. Furthermore, the

duration of the QRS complex remains constant, while its mag-

nitude decreases for higher concentrations of verapamil. The

tendency observed in the ECGs and v-t relations can be ex-

plained as follows. The action potential duration of myocytes

is reduced as the concentration of verapamil is increased. This

causes an abbreviated QT interval and also affects the action

potential duration dispersion leading to the smaller and in-

verted T-wave. Additionally, verapamil lowers the magnitude

of the active stretch, resulting in a smaller EF.
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Figure 7: The steps of the virtual LV model generation from

4D echo data. From left to right, segmentation of the endo-

cardial and epicardial surfaces at end-diastole, construction of

the endocardial and epicardial frame through the coordinates

obtained from the segmentation, creation of surface elements

over the endocardium and epicardium, creation of surface el-

ements over the basal region in order to obtain a closed vol-

ume and unification of all surface elements in order to create

a solid LV geometry.
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Figure 8: Illustration of the application of two concentrations

of verapamil (cverap = 100 and 1500 nM) and its compari-

sion to the control case (cverap = 0 nM). The graph presents

the ECG, normalized voltage, (upper curves) and v-t diagram

(lower curves).

4 Conclusion

The advent of computational facilities provides a great pos-

sibility for examining the heart in a virtual manner, i.e. non-

invasive, cheap and fast. In the near future, cardiologists will

undoubtedly derive more and more benefits from numerical

tools for gaining deep insight into the working mechanisms

of the heart and developing successful patient-specific treat-

ment methods. In this contribution, we presented our latest

numerical developments serving as a milestone towards this

ultimate goal. We illustrated the feasibility of the numerical

scheme through elaborate numerical examples that are clini-

cally relevant and interesting.
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1 Abstract

In the early stages of human brain development, the
initially smooth outer layer, the cortex, buckles into
a highly convoluted pattern – driven by growth-induced
mechanical instabilities. The cortical folding pattern is
closely correlated with brain function. Therefore, malfor-
mations are an important clinical indicator for neurolog-
ical disorders, such as schizophrenia or epilepsy. Com-
putational mechanics is a powerful tool to understand
the underlying mechanisms of cortical malformations and
to assist diagnosis and treatment of associated diseases.
This, however, will only become possible if we succeed
in linking (disrupted) cellular brain development on the
microscopic scale to (ab)normal cortical folding on the
macroscopic scale. Here, we use a multifield computa-
tional framework, which couples an advection-diffusion
model with finite growth, to model the complex inter-
play between cell division and migration, cellular con-
nectivity, and cortical folding during physiological and
pathological brain development.

2 Introduction

Throughout brain development, the complex structure
of this fascinating organ keeps changing – on both micro-
scopic and macroscopic scales – in close relation to brain
function. Computational models based on the nonlinear
field theories of mechanics are a promising tool to trans-
fer processes on the cellular scale to structural changes
on the continuum scale.
On the cellular scale, progenitor cells divide symmetri-
cally and asymmetrically in the inner layers of our brain
in the early stages of development [5, 23, 13]. The newly
generated neurons deep inside the brain then migrate
outwards along so-called radial glial cell (RGC) fibers,
and finally form the cortex from the inside to the out-
side [22], as illustrated in Figure 1, left. RGC fibers
control the migration direction of neurons. After about
20 weeks of gestation, the neuronal cells settled in the
cortex start to interconnect, which initiates a significant
expansion of the outer cortical brain layers. Not only
neurons, but also other cellular components such as glial
cells (astrocytes, oligodendrocytes, and microglial cells)
and capillaries start to accumulate and grow [3] (Figure
1, right). The cortical expansion during neuronal con-
nectivity is constrained by slower growing inner layers

[20]. Thus, compressive stresses emerge, which eventu-
ally induce mechanical instabilities and cortical folding
[24, 4, 13]. If either cell migration or cellular connectivity
are disrupted, cortical malformations can occur, which
are associated with mental disorders including develop-
mental delay, epilepsy, or schizophrenia [19, 2]. Compu-
tational mechanics can help to elucidate the underlying
(physical) mechanisms of such diseases [13].

3 Computational model

3.1 Coupling cellular migration, cellular connec-
tivity, and volume growth

We can model the (physiological and pathological) cor-
tical folding process using the theory of finite growth
[4, 12]. This common approach multiplicatively decom-
poses the deformation gradient F into an elastic part F e

and a growth part F g [25],

F = ∇Xϕ = F e · F g (1)

The key is then to prescribe the growth tensor F g and its
evolution in time to realistically mimic the phenomena
underlying growth in the developing brain. We assume
that the cortex layer grows anisotropically during the
phase of emerging neuronal connectivity. Therefore, we
formulate the growth tensor as

F g = ϑ⊥ [I −N ⊗N ] + ϑ� N ⊗N [21], (2)

where N denotes the outward pointing normal in the
reference configuration B0, and ϑ⊥ and ϑ� denote the
scalar-valued growth multipliers controlling the amount
of growth in the tangential and radial directions, respec-
tively, as illustrated in Figure 2.
The balance of linear momentum forms the key equation
to describe the deformation of the brain during cortical
folding. Herein, we reformulate the stresses in terms of
the elastic deformation F e computed from the growth
tensor in equation (1). This constitutes the first balance
equation of the coupled problem, which, in the spatial
configuration Bt, reads

divσ(F e) = 0. (3)
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Figure 1: Schematic illustration of early brain development and neurogenesis, as well as neuronal connectivity
resulting in cortical folding.

To link cellular processes, such as cell division in the
inner brain layers, cell migration along radial glial cell
fibers, and tangential migration of interneurons, with
macroscopic growth and folding, recent studies have pro-
posed to introduce the cell density as an additional scalar
field c0, which is kept in balance through the cell density
source Rc representing cell division, and the cell density
flux Qc representing cell migration [28, 16].
We then additionally solve the balance of mass [17],
which, in the reference configuration B0, is given by

ċ0 = DivQc +Rc, (4)

while the corresponding equation in the spatial configu-
ration Bt reads

J̇

J
c+ ċ = div qc + rc, (5)

where J is the Jacobian J = detF , and qc and rc are
the spatial cell density flux and source, respectively [16].
We further couple the cell density problem with volume
growth through a cell-density-dependent growth multi-
plier

ϑ⊥ =
[
1 + κ⊥ c

]α
ϑ� =

[
1 + κ� c

]α
, (6)

where κ⊥ and κ� denote the scalar-valued, spatially vary-
ing tangential and radial growth factors, and α denotes
the growth exponent [16].
This approach enables us to explicitly predict how dis-
ruptions on the cellular level affect growth, folding, and
structural abnormalities on the continuum scale.
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Figure 2: Kinematics of finite growth based on the mul-
tiplicative decomposition of the deformation gradient F
into an elastic part F e and a growth part F g. The de-
formation map φ maps tissue at position X in the un-
deformed, ungrown reference configuration B0 to its new
position x = ϕ(X, t) in the spatial, grown and deformed
configuration Bt. The growth tensor F g maps tissue from
the reference configuration to a stress-free configuration
after growth Bg and is coupled to cell division, migration
and diffusion through cell-density-dependent tangential
and radial growth multipliers ϑ⊥ and ϑ�, wherein the
cell density c is introduced as an additional field with its
reference distribution c0(X).

Coupling cellular brain development with cortical folding
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Figure 3: Exemplary evolution of the cell density field and cortical folding. The simulation (top row) well cap-
tures the evolving surface pattern shown on magnetic resonance images of the developing fetal brain (bottom row),
adapted from [18].
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Figure 4: The temporal evolution of cell density, von Mises stress, radial, and tangential growth factors estimated
at the green and yellow points in Figure 3 corresponding to gyri and sulci, respectively.

3.2 Constitutive equations

Mathematically, we formulate the flux term that appears
in equations (4) and (5) by using a convection-diffusion

equation,

qc = −cH(c; γ)v(x) + dcc ·∇x c, (7)

Figure 1: Schematic illustration of early brain development and neurogenesis, as well as neuronal connectivity
resulting in cortical folding.

To link cellular processes, such as cell division in the
inner brain layers, cell migration along radial glial cell
fibers, and tangential migration of interneurons, with
macroscopic growth and folding, recent studies have pro-
posed to introduce the cell density as an additional scalar
field c0, which is kept in balance through the cell density
source Rc representing cell division, and the cell density
flux Qc representing cell migration [28, 16].
We then additionally solve the balance of mass [17],
which, in the reference configuration B0, is given by

ċ0 = DivQc +Rc, (4)

while the corresponding equation in the spatial configu-
ration Bt reads

J̇

J
c+ ċ = div qc + rc, (5)

where J is the Jacobian J = detF , and qc and rc are
the spatial cell density flux and source, respectively [16].
We further couple the cell density problem with volume
growth through a cell-density-dependent growth multi-
plier

ϑ⊥ =
[
1 + κ⊥ c

]α
ϑ� =

[
1 + κ� c

]α
, (6)

where κ⊥ and κ� denote the scalar-valued, spatially vary-
ing tangential and radial growth factors, and α denotes
the growth exponent [16].
This approach enables us to explicitly predict how dis-
ruptions on the cellular level affect growth, folding, and
structural abnormalities on the continuum scale.
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Figure 2: Kinematics of finite growth based on the mul-
tiplicative decomposition of the deformation gradient F
into an elastic part F e and a growth part F g. The de-
formation map φ maps tissue at position X in the un-
deformed, ungrown reference configuration B0 to its new
position x = ϕ(X, t) in the spatial, grown and deformed
configuration Bt. The growth tensor F g maps tissue from
the reference configuration to a stress-free configuration
after growth Bg and is coupled to cell division, migration
and diffusion through cell-density-dependent tangential
and radial growth multipliers ϑ⊥ and ϑ�, wherein the
cell density c is introduced as an additional field with its
reference distribution c0(X).



winter 202030

where the reference and the spatial fluxes are related
by Qc = Jqc · F−T [15, 16]. The flux is a summa-
tion of two terms. The first term (migration term)
represents the migration of the cells along the radial
glial cell fiber direction towards the brain surface, as
illustrated in Figures 1 and 2. The second term (dif-
fusion term) represents cellular diffusion, which oc-
curs when the neurons have reached the cortical lay-
ers [14]. The nonlinear Heaviside function H(c; γ) =
exp

�
γ (c− c0)

�
/
�
1 + exp

�
γ (c− c0)

��
, controls the dis-

tribution of the cell-density field, where c0 is the migra-
tion threshold. The migration velocity v = vn/ � n �
defines the direction and speed of neuronal migration.
Here, n denotes the normalized radial glial cell fiber di-
rection vector in the spatial configuration, as illustrated
in Figure 2. The diffusion tensor dcc = dcc I describes
isotropic diffusion with diffusivity dcc. The Jacobian
links the reference source term to the spatial source term
by Rc = Jrc. The cell division rate Gc(x) defines the
spatial source term

rc = Gc(x). (8)

Importantly, cellular rearrangements during brain devel-
opment, as schematically shown in Figure 1, not only re-
sult in tissue growth but also in changes in tissue stiffness
[29, 27]. This process has not yet been well assessed ex-
perimentally in humans and therefore constitutes a chal-
lenge when choosing appropriate material laws and ma-
terial parameters to simulate brain development. Impor-
tantly, especially for cortical folding, the stiffness con-
trast between the different layers, cortex and subcortex,
plays a key role and largely controls the evolving surface
pattern and the mode of instability [12]. Here, we model
brain tissue as a neo-Hookean hyperelastic solid with the
strain-energy function

ψ(F e) =
1

2
λ In2(Je) (9)

+
1

2
μ [F e : F e − 3− 2 In(Je) ] ,

where μ and λ are the Lamé constants. To capture the
varying stiffness due to tissue maturation in the develop-
ing brain, we introduce the shear modulus as a function
of the cell density c,

μ(c) =

⎧⎪⎨
⎪⎩

μmax if c ≥ cmax,

μ0 +mc(c− c0) if cmax > c > c0,

μ0 if c ≤ c0.

(10)

where μ0 and μmax are the minimum and maximum shear
moduli at the beginning and end of gestation, respec-
tively, with corresponding cell densities c0 and cmax. The

cell density corresponding to the lowest shear modulus is
equal to the migration threshold. The gradient mc is
computed as

mc =
μmax − μ0

cmax − c0
. (11)

We note that this positive relation between cell density
and brain tissue stiffness is only valid during the develop-
mental phase [27], while the trend appears to be reversed
in the fully developed brain [7]; it changes throughout the
life cycle of the human brain [8].

4 Results

4.1 Spatio-temporal evolution of cell density,
stiffness and cortical folding

To validate the computational model, we use a sim-
ple 2D problem representing a part of the frontal lobe
of the human brain, as illustrated in Figure 3. We
use the material parameters, which we obtained from
biomechanical experiments of different regions of human
brain tissue under multiple loading modes [10, 9]. Our
study showed that the cortex is approximately three
times stiffer than subcortical areas with a cortical shear
modulus of 2.07 kPa and a subcortical modulus of ap-
proximately 0.65 kPa. As these values were measured
in the fully developed brain – not during early stages of
development –we have additionally systematically var-
ied the stiffness ratio between the cortex and subcortex
βμ = μc/μs in the range of 3 and 10 to investigate its
effect on the cortical folding pattern. We observed most
realistic patterns for stiffness ratios between 3 and 5.
An additional critical factor for the folding process is
the growth ratio between tangential and radial growth
βg = κ⊥/κ� (see equation 6), which we have varied be-
tween βg = 1, 1.5, and 3. Table 1 summarizes all model
parameters used for the simulation in Figure 3.
Figure 3 contrasts the simulation results with magnetic
resonance images of fetal brains published in [18]. The
simulation well captures the evolution of cortical folds
from week 17 until week 34 of gestation. Figure 4
shows the corresponding evolution of cell density, von
Mises stress, as well as radial and tangential growth
factors at a representative point in a gyrus and sul-
cus, respectively, marked as green and yellow points in
Figure 3. The model predicts the known phenomenon
that cell density and growth are lower in sulci than
in gyri. Both show a pitchfork-like bifurcation at the
initiation of cortical folding: the initially uniform dis-
tribution of cell nuclei and growth in the cortex starts
to decrease in sulci, while it continues to increase in
gyri. In contrast, the von Mises stress starts to drop in
gyri at the instability point, but rises again after reach-

Coupling cellular brain development with cortical folding
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where the reference and the spatial fluxes are related
by Qc = Jqc · F−T [15, 16]. The flux is a summa-
tion of two terms. The first term (migration term)
represents the migration of the cells along the radial
glial cell fiber direction towards the brain surface, as
illustrated in Figures 1 and 2. The second term (dif-
fusion term) represents cellular diffusion, which oc-
curs when the neurons have reached the cortical lay-
ers [14]. The nonlinear Heaviside function H(c; γ) =
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defines the direction and speed of neuronal migration.
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rection vector in the spatial configuration, as illustrated
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isotropic diffusion with diffusivity dcc. The Jacobian
links the reference source term to the spatial source term
by Rc = Jrc. The cell division rate Gc(x) defines the
spatial source term

rc = Gc(x). (8)

Importantly, cellular rearrangements during brain devel-
opment, as schematically shown in Figure 1, not only re-
sult in tissue growth but also in changes in tissue stiffness
[29, 27]. This process has not yet been well assessed ex-
perimentally in humans and therefore constitutes a chal-
lenge when choosing appropriate material laws and ma-
terial parameters to simulate brain development. Impor-
tantly, especially for cortical folding, the stiffness con-
trast between the different layers, cortex and subcortex,
plays a key role and largely controls the evolving surface
pattern and the mode of instability [12]. Here, we model
brain tissue as a neo-Hookean hyperelastic solid with the
strain-energy function

ψ(F e) =
1

2
λ In2(Je) (9)

+
1

2
μ [F e : F e − 3− 2 In(Je) ] ,

where μ and λ are the Lamé constants. To capture the
varying stiffness due to tissue maturation in the develop-
ing brain, we introduce the shear modulus as a function
of the cell density c,

μ(c) =

⎧⎪⎨
⎪⎩

μmax if c ≥ cmax,

μ0 +mc(c− c0) if cmax > c > c0,

μ0 if c ≤ c0.

(10)

where μ0 and μmax are the minimum and maximum shear
moduli at the beginning and end of gestation, respec-
tively, with corresponding cell densities c0 and cmax. The

cell density corresponding to the lowest shear modulus is
equal to the migration threshold. The gradient mc is
computed as

mc =
μmax − μ0

cmax − c0
. (11)

We note that this positive relation between cell density
and brain tissue stiffness is only valid during the develop-
mental phase [27], while the trend appears to be reversed
in the fully developed brain [7]; it changes throughout the
life cycle of the human brain [8].

4 Results

4.1 Spatio-temporal evolution of cell density,
stiffness and cortical folding

To validate the computational model, we use a sim-
ple 2D problem representing a part of the frontal lobe
of the human brain, as illustrated in Figure 3. We
use the material parameters, which we obtained from
biomechanical experiments of different regions of human
brain tissue under multiple loading modes [10, 9]. Our
study showed that the cortex is approximately three
times stiffer than subcortical areas with a cortical shear
modulus of 2.07 kPa and a subcortical modulus of ap-
proximately 0.65 kPa. As these values were measured
in the fully developed brain – not during early stages of
development –we have additionally systematically var-
ied the stiffness ratio between the cortex and subcortex
βμ = μc/μs in the range of 3 and 10 to investigate its
effect on the cortical folding pattern. We observed most
realistic patterns for stiffness ratios between 3 and 5.
An additional critical factor for the folding process is
the growth ratio between tangential and radial growth
βg = κ⊥/κ� (see equation 6), which we have varied be-
tween βg = 1, 1.5, and 3. Table 1 summarizes all model
parameters used for the simulation in Figure 3.
Figure 3 contrasts the simulation results with magnetic
resonance images of fetal brains published in [18]. The
simulation well captures the evolution of cortical folds
from week 17 until week 34 of gestation. Figure 4
shows the corresponding evolution of cell density, von
Mises stress, as well as radial and tangential growth
factors at a representative point in a gyrus and sul-
cus, respectively, marked as green and yellow points in
Figure 3. The model predicts the known phenomenon
that cell density and growth are lower in sulci than
in gyri. Both show a pitchfork-like bifurcation at the
initiation of cortical folding: the initially uniform dis-
tribution of cell nuclei and growth in the cortex starts
to decrease in sulci, while it continues to increase in
gyri. In contrast, the von Mises stress starts to drop in
gyri at the instability point, but rises again after reach-

Table 1: Model parameters.

parameter value unit
cortical stiffness μc 2.07 Nmm−2

stiffness ratio βμ 5 -
first Lamé parameter λ 6.5 Nmm−2

division rate Gc 130 mm−2 d−1

migration speed v 5 mmd−1

migration threshold c0 400 mm−3

Heaviside exponent γ 0.008 -
diffusivity dcc 0.11 mm2 d−1

growth parameter κ⊥ 7.05× 10−4 mm2

growth exponent α 1.65 -
growth ratio βg 1.5 -

ing a local minimum at around 29 weeks of gestation.

In the sulci, the stress reaches its maximum at around
31 weeks of gestation and then starts to decrease until
it even drops below the stresses in gyri at around 34
gestational weeks.

Figure 5: Numerically predicted orientation of radial
glial cell fibers well resembles the fan-like structure
known from the human brain.

Interestingly, our simulations suggest that certain fea-
tures such as the fan-like distribution of radial glial
cell fibers, which have been regarded as possible driving
forces of cortical folding in the neuroscience community
[6], are rather a result than a cause of the folding pro-
cess, as numerically predicted in Figure 5. These insights
demonstrate the value of coupling processes on the cel-
lular level with cortical folding. Only then, it becomes

possible to connect knowledge from the neuroscience per-
spective with results from numerical analyses of cortical
folding.

4.2 The effect of brain geometry

Figure 6: The three-dimensional cortical folding pattern
in the developing human brain at gestational week 22,
at birth, and at the age of 30 (top), compared to the
swelling of a bilayered silicone elastomer (middle), and
finite element simulations (bottom).

Besides stiffness and growth, geometrical factors, espe-
cially cortical thickness and local brain curvature, play an
important role for the evolving folding pattern [11]. As
it is difficult to obtain fine resolution three-dimensional
data on the evolution of the brain’s surface during devel-
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opment in utero, we propose to use an experimental setup
to further validate the computationally predicted folding
patterns. We study the effects of abnormal brain shape,
cortical thickness or brain stiffness through swelling ex-
periments with silicon elastomers, where the outer layer
representing the cortex swells when immersed in solvent
[26]. Due to the constraint by the inner core represent-
ing the subcortex, folds emerge that closely resemble the
morphology of the human brain at birth, as illustrated in
Figure 6, middle. Through the combination of coupled
simulations, swelling experiments, and imaging analyses
of the human brain, our goal is to extract purely ge-
ometrical effects from cell programming and biological
factors.

5 Conclusions and future perspectives

Computational mechanics have become a powerful tool
to predict the structural development of the human
brain. It may open new pathways where traditional
medical approaches reach their limits. While the role
of mechanics for brain function, injury, and disease is in-
creasingly appreciated by neuroscientists, biologists and
medical researchers, mechanical aspects have so far not
been adopted to enhance daily clinical practice. In this
respect, the current approach constitutes an important
step to enable mechanics-enhanced diagnosis and treat-
ment strategies in the future. Through the presented
methodology, we aim to link the diagnostic findings on
the microscopic scale, for instance from histological sec-
tions, with clinical data on the organ scale, e.g., from
magnetic resonance images – to obtain unprecedented in-
sights into diseases associated with brain malformations.
To further calibrate and validate our simulations in the
future, we are currently collaborating with neuropathol-
ogists, who will provide us with cell density distributions
from histological stains at different stages of human brain
development. In addition, future steps will include tack-
ling neurological diseases such as epilepsy and modeling
the active behavior of cells. Mechanical properties of
their micro-environment affect cell migration, prolifera-
tion, and growth. In turn, the cells produce the extra-
cellular matrix and therewith alter the mechanical prop-
erties of their environment. This leads to a highly cou-
pled, yet very exciting problem. Modeling these pro-
cesses computationally will revolutionize the opportuni-
ties to use simulations to advance diagnosis and treat-
ment of neurological diseases or brain injury. While it
will be challenging to accurately calibrate and validate
such models, they may eventually help to find alternative
identification criteria and treatment strategies for neuro-
logical disorders that are directly linked to malformations
of cortical development, such as epilepsy, schizophrenia,
or autism [1, 2].
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ing the subcortex, folds emerge that closely resemble the
morphology of the human brain at birth, as illustrated in
Figure 6, middle. Through the combination of coupled
simulations, swelling experiments, and imaging analyses
of the human brain, our goal is to extract purely ge-
ometrical effects from cell programming and biological
factors.

5 Conclusions and future perspectives

Computational mechanics have become a powerful tool
to predict the structural development of the human
brain. It may open new pathways where traditional
medical approaches reach their limits. While the role
of mechanics for brain function, injury, and disease is in-
creasingly appreciated by neuroscientists, biologists and
medical researchers, mechanical aspects have so far not
been adopted to enhance daily clinical practice. In this
respect, the current approach constitutes an important
step to enable mechanics-enhanced diagnosis and treat-
ment strategies in the future. Through the presented
methodology, we aim to link the diagnostic findings on
the microscopic scale, for instance from histological sec-
tions, with clinical data on the organ scale, e.g., from
magnetic resonance images – to obtain unprecedented in-
sights into diseases associated with brain malformations.
To further calibrate and validate our simulations in the
future, we are currently collaborating with neuropathol-
ogists, who will provide us with cell density distributions
from histological stains at different stages of human brain
development. In addition, future steps will include tack-
ling neurological diseases such as epilepsy and modeling
the active behavior of cells. Mechanical properties of
their micro-environment affect cell migration, prolifera-
tion, and growth. In turn, the cells produce the extra-
cellular matrix and therewith alter the mechanical prop-
erties of their environment. This leads to a highly cou-
pled, yet very exciting problem. Modeling these pro-
cesses computationally will revolutionize the opportuni-
ties to use simulations to advance diagnosis and treat-
ment of neurological diseases or brain injury. While it
will be challenging to accurately calibrate and validate
such models, they may eventually help to find alternative
identification criteria and treatment strategies for neuro-
logical disorders that are directly linked to malformations
of cortical development, such as epilepsy, schizophrenia,
or autism [1, 2].
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1. (passive) elasticity of the gastric wall,

2. propagation and effect of electric waves in the gastric
wall,

3. (active) muscle tension in the gastric wall,

4. both solid and liquid phases of the digesta in the stom-
ach,

5. interactions between the digesta and the gastric wall.

In the subsequent sections, the state of the art with re-
spect to these five key questions as well as open problems
are discussed.

3 Elasticity of the gastric wall

The mechanical properties of the stomach wall are highly
specific. They are affected by environmental factors and
age. Like many biological tissues, the gastric wall ex-
hibits a highly nonlinear and anisotropic elastic behavior.
It can be modeled by a nonlinear strain energy function
W . With the deformation gradient F, Cauchy stress can
then be computed as

T =
1

det(F)

∂W

∂F
FT . (1)

For a discussion of appropriate strain energy func-
tions and constitutive parameters for the gastric wall, the
reader is referred to [17, 18, 19, 3, 12, 4]. Generally, the
elastic properties of gastric tissue greatly vary between
the three major regions of the stomach, the fundus, the
corpus, and the antrum (Figure 1). To date, most avail-
able data about the elastic properties of gastric tissues
come from animal tissues, and there remains in partic-
ular a need for more mechanical tests of human gastric
tissue. These may help to understand whether or how
changes in the elasticity of the gastric wall are related to
pathologies such as dyspepsia or morbid obesity.

4 Electric waves in the gastric wall

For mixing and grinding the digesta, slow muscular con-
tractions waves are propagating through the stomach,
so-called peristaltic contractions. These are controlled
by slow electric waves initiating in the upper (proximal)
part of the stomach and propagating towards the pylorus
with a frequency of around 3 cycles per minute. The
electric waves are governed by a biological system that
is by far more complex than the one controlling the con-
tractions of the heart. This system relies on a complex
interplay between smooth muscle cells (SMC) and the so-
called interstitial cells of Cajal (ICC) [9, 25, 28]. Based

on homogenization techniques [13], continuum reaction-
diffusion models of gastric electrical activity of varying
complexity can be derived [2, 24, 8, 26, 10]. [7] showed
that the following simple so-called monodomain model is
sufficient to reproduce at least the most important pat-
terns of slow electric wave initiation and propagation in
the gastric wall on the continuum level:

∂vi

∂t
= σiΔvi + Iiion − Igap, (2)

∂vm

∂t
= σmΔvm + Imion + Igap. (3)

Here, vi, vm are the electric transmembrane potentials
of ICC and SMC, respectively, σi, σm denote isotropic
diffusion parameters for the electrical potential in these
two components of the tissue, Δ is the Laplace oper-
ator, and Iiion, Imion and Igap are electric currents. To
compute these currents, either simple phenomenological
equations or complex scale-bridging models relating cel-
lular and organ level can be used. The development
of such scale-bridging models is an active field of re-
search and will probably remain so for at least the next
decade. Computational modeling can be expected to be
a powerful tool to develop and validate hypotheses in this
area. To this end, a good starting point is the biophysi-
cal model of gastrointestinal electrical activity developed
by [22, 21]. The simulation of stable ring-shaped con-
duction patterns with the above-mentioned simple phe-
nomenological model of slow electric wave initiation and
propagation is illustrated in Figure 2 and Figure 3 (up-
per row) for a simple cylindrical gastric model geometry.
The above-mentioned model can also produce perturbed
propagation patterns that may help to understand gas-
tric dysrhythmias and thus perhaps also dyspepsia (Fig-
ure 3, lower row).

5 Active muscle tension in the wall

The electric slow waves propagating through the stom-
ach are controlling smooth muscle tension in the gas-
tric wall through complex cellular processes where free
intracellular Ca(2+) ions play a key role [16, 25]. The
resulting muscular (peristaltic) contractions are mixing
and grinding the digesta. Theoretical and experimental
investigations of active SMC tension in the gastric wall
is challenging. Only recently have the active mechanical
properties of gastric smooth muscle tissue been studied
for the first time in detail in experiments [27]. To model
active tension in the gastric wall, two major approaches
have been developed, the active stress and the active
strain approach. In the active stress approach, the total
stress in the gastric wall is computed as the sum of an
elastic stress following Eq. (1) and an additional active
muscular stress [16]. By contrast, in the active strain
approach, the deformation gradient F of the gastric wall
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1 Abstract

In computational biomechanics, the gastro-intestinal
tract (stomach and intestine) is much less studied than
the cardio-vascular system. The focus on the cardio-
vascular system is most likely a consequence of its vital
importance, whereas gastro-intestinal pathologies often
result in a substantial and permanent reduction of the
quality of life but are in many cases not deadly. How-
ever, as life expectancy keeps increasing, quality of life
is becoming more and more important. Hence, we can
expect that the gastro-intestinal tract will attract more
and more attention over the next years. In this arti-
cle, we briefly summarize the state of the art and high-
light opportunities for computational researchers in this
emerging area of computational biomechanics.

2 Introduction

Pathologies related to the gastro-intestinal tract are a
frequent cause of morbidity with an associated high eco-
nomic cost and substantial reduction of the quality of life.
For example, gastro-esophageal reflux disease (GERD)
causes an estimated $20 billion/year of healthcare costs
in the US alone [14]. At the same time, in the general
population of industrialized countries 10% - 45% are as-
sumed to suffer from dyspepsia (indigestion) [23], and
the soaring prevalence of obesity has resulted in hundred
thousands of bariatric surgeries per year in the US and
EU together [5, 1]. All these issues are closely related
to the mechanics of the stomach. At the same time,
nobody has yet proposed a computational multi-physics
model of the stomach combining at least the most impor-
tant aspects of its mechanics, that is, the fluid mechan-
ics of the digesta and the electromechanics of the gastric
wall in a comprehensive computational framework. This
limitation of the state of the art can be understood as
a great opportunity for researchers from computational
mechanics. In the following, we give a brief introduction
to the state of the art in computational gastric mechan-
ics and highlight promising opportunities in this field for
researchers from computational mechanics.

Figure 1: The stomach is located between esophagus and
small bowel and can be divided into three regions, fun-
dus, corpus, and antrum. Whereas the fundus mainly
serves for storing digesta, corpus and antrum are respon-
sible for mixing and grinding them by muscular con-
traction waves that originate in the upper (proximal)
part of the stomach and propagate towards the pylorus,
which is separating the stomach from the small bowel;
illustration created by Christian J. Cyron and Roland
C. Aydin, licensed under CC BY 4.0 (creativecom-
mons.org/licenses/by/4.0/legalcode)

Anatomically, the stomach connects the esophagus and
the intestine. Food arrives through the mouth and esoph-
agus in the stomach. The stomach is storing, mixing, and
grinding the digesta before they are passed for further di-
gestion through the pylorus into the small intestine. The
stomach is a roughly J-shaped hollow muscular organ
(Figure 1), filled with a fluid-like content, the digesta.
The mechanics of the wall of the stomach is formed by
living tissue and exhibits both a passive elasticity and an
active muscular tension. The digesta arrive in the stom-
ach in the form of still solid-like food boluses and are
subsequently degraded and diluted in the liquid environ-
ment of the stomach until they form a multi-phase fluid.
This process is promoted by rhythmic muscular contrac-
tions of the stomach, so-called peristaltic waves moving
along the stomach. These are controlled by slow elec-
tric waves propagating along the stomach. Thus, com-
putational modeling of the stomach touches a number
of different issues complex in nature. The related key
questions are, how to model the
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1. (passive) elasticity of the gastric wall,

2. propagation and effect of electric waves in the gastric
wall,

3. (active) muscle tension in the gastric wall,

4. both solid and liquid phases of the digesta in the stom-
ach,

5. interactions between the digesta and the gastric wall.

In the subsequent sections, the state of the art with re-
spect to these five key questions as well as open problems
are discussed.

3 Elasticity of the gastric wall

The mechanical properties of the stomach wall are highly
specific. They are affected by environmental factors and
age. Like many biological tissues, the gastric wall ex-
hibits a highly nonlinear and anisotropic elastic behavior.
It can be modeled by a nonlinear strain energy function
W . With the deformation gradient F, Cauchy stress can
then be computed as

T =
1

det(F)

∂W

∂F
FT . (1)

For a discussion of appropriate strain energy func-
tions and constitutive parameters for the gastric wall, the
reader is referred to [17, 18, 19, 3, 12, 4]. Generally, the
elastic properties of gastric tissue greatly vary between
the three major regions of the stomach, the fundus, the
corpus, and the antrum (Figure 1). To date, most avail-
able data about the elastic properties of gastric tissues
come from animal tissues, and there remains in partic-
ular a need for more mechanical tests of human gastric
tissue. These may help to understand whether or how
changes in the elasticity of the gastric wall are related to
pathologies such as dyspepsia or morbid obesity.

4 Electric waves in the gastric wall

For mixing and grinding the digesta, slow muscular con-
tractions waves are propagating through the stomach,
so-called peristaltic contractions. These are controlled
by slow electric waves initiating in the upper (proximal)
part of the stomach and propagating towards the pylorus
with a frequency of around 3 cycles per minute. The
electric waves are governed by a biological system that
is by far more complex than the one controlling the con-
tractions of the heart. This system relies on a complex
interplay between smooth muscle cells (SMC) and the so-
called interstitial cells of Cajal (ICC) [9, 25, 28]. Based

on homogenization techniques [13], continuum reaction-
diffusion models of gastric electrical activity of varying
complexity can be derived [2, 24, 8, 26, 10]. [7] showed
that the following simple so-called monodomain model is
sufficient to reproduce at least the most important pat-
terns of slow electric wave initiation and propagation in
the gastric wall on the continuum level:

∂vi

∂t
= σiΔvi + Iiion − Igap, (2)

∂vm

∂t
= σmΔvm + Imion + Igap. (3)

Here, vi, vm are the electric transmembrane potentials
of ICC and SMC, respectively, σi, σm denote isotropic
diffusion parameters for the electrical potential in these
two components of the tissue, Δ is the Laplace oper-
ator, and Iiion, Imion and Igap are electric currents. To
compute these currents, either simple phenomenological
equations or complex scale-bridging models relating cel-
lular and organ level can be used. The development
of such scale-bridging models is an active field of re-
search and will probably remain so for at least the next
decade. Computational modeling can be expected to be
a powerful tool to develop and validate hypotheses in this
area. To this end, a good starting point is the biophysi-
cal model of gastrointestinal electrical activity developed
by [22, 21]. The simulation of stable ring-shaped con-
duction patterns with the above-mentioned simple phe-
nomenological model of slow electric wave initiation and
propagation is illustrated in Figure 2 and Figure 3 (up-
per row) for a simple cylindrical gastric model geometry.
The above-mentioned model can also produce perturbed
propagation patterns that may help to understand gas-
tric dysrhythmias and thus perhaps also dyspepsia (Fig-
ure 3, lower row).

5 Active muscle tension in the wall

The electric slow waves propagating through the stom-
ach are controlling smooth muscle tension in the gas-
tric wall through complex cellular processes where free
intracellular Ca(2+) ions play a key role [16, 25]. The
resulting muscular (peristaltic) contractions are mixing
and grinding the digesta. Theoretical and experimental
investigations of active SMC tension in the gastric wall
is challenging. Only recently have the active mechanical
properties of gastric smooth muscle tissue been studied
for the first time in detail in experiments [27]. To model
active tension in the gastric wall, two major approaches
have been developed, the active stress and the active
strain approach. In the active stress approach, the total
stress in the gastric wall is computed as the sum of an
elastic stress following Eq. (1) and an additional active
muscular stress [16]. By contrast, in the active strain
approach, the deformation gradient F of the gastric wall

Computational Modeling of the Stomach

by R.C. Aydin1, R.N. Miftahof2, S. Brandstaeter3, S.L. Fuchs2,3 & C.J. Cyron1,2

1Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Germany
2Institute of Continuum and Materials Mechanics, Hamburg University of Technology, Germany

3Institute for Computational Mechanics, Technical University of Munich, Germany

1 Abstract

In computational biomechanics, the gastro-intestinal
tract (stomach and intestine) is much less studied than
the cardio-vascular system. The focus on the cardio-
vascular system is most likely a consequence of its vital
importance, whereas gastro-intestinal pathologies often
result in a substantial and permanent reduction of the
quality of life but are in many cases not deadly. How-
ever, as life expectancy keeps increasing, quality of life
is becoming more and more important. Hence, we can
expect that the gastro-intestinal tract will attract more
and more attention over the next years. In this arti-
cle, we briefly summarize the state of the art and high-
light opportunities for computational researchers in this
emerging area of computational biomechanics.

2 Introduction

Pathologies related to the gastro-intestinal tract are a
frequent cause of morbidity with an associated high eco-
nomic cost and substantial reduction of the quality of life.
For example, gastro-esophageal reflux disease (GERD)
causes an estimated $20 billion/year of healthcare costs
in the US alone [14]. At the same time, in the general
population of industrialized countries 10% - 45% are as-
sumed to suffer from dyspepsia (indigestion) [23], and
the soaring prevalence of obesity has resulted in hundred
thousands of bariatric surgeries per year in the US and
EU together [5, 1]. All these issues are closely related
to the mechanics of the stomach. At the same time,
nobody has yet proposed a computational multi-physics
model of the stomach combining at least the most impor-
tant aspects of its mechanics, that is, the fluid mechan-
ics of the digesta and the electromechanics of the gastric
wall in a comprehensive computational framework. This
limitation of the state of the art can be understood as
a great opportunity for researchers from computational
mechanics. In the following, we give a brief introduction
to the state of the art in computational gastric mechan-
ics and highlight promising opportunities in this field for
researchers from computational mechanics.

Figure 1: The stomach is located between esophagus and
small bowel and can be divided into three regions, fun-
dus, corpus, and antrum. Whereas the fundus mainly
serves for storing digesta, corpus and antrum are respon-
sible for mixing and grinding them by muscular con-
traction waves that originate in the upper (proximal)
part of the stomach and propagate towards the pylorus,
which is separating the stomach from the small bowel;
illustration created by Christian J. Cyron and Roland
C. Aydin, licensed under CC BY 4.0 (creativecom-
mons.org/licenses/by/4.0/legalcode)

Anatomically, the stomach connects the esophagus and
the intestine. Food arrives through the mouth and esoph-
agus in the stomach. The stomach is storing, mixing, and
grinding the digesta before they are passed for further di-
gestion through the pylorus into the small intestine. The
stomach is a roughly J-shaped hollow muscular organ
(Figure 1), filled with a fluid-like content, the digesta.
The mechanics of the wall of the stomach is formed by
living tissue and exhibits both a passive elasticity and an
active muscular tension. The digesta arrive in the stom-
ach in the form of still solid-like food boluses and are
subsequently degraded and diluted in the liquid environ-
ment of the stomach until they form a multi-phase fluid.
This process is promoted by rhythmic muscular contrac-
tions of the stomach, so-called peristaltic waves moving
along the stomach. These are controlled by slow elec-
tric waves propagating along the stomach. Thus, com-
putational modeling of the stomach touches a number
of different issues complex in nature. The related key
questions are, how to model the
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can be decomposed multiplicatively via

F = FeFa (4)

into an inelastic part Fa representing the load-free state
of the tissue in the presence of a certain muscular ten-
sion, and a remaining elastic part Fe. The latter ensures
geometric compatibility of the deformation of the stom-
ach as a whole, and the strain energy W in Eq. (1) solely
depends on this elastic part. The first active strain model
of the gastric wall stress was introduced by [7], using

Fa = I− γ(αcNc ⊗Nc +αlNl ⊗Nl)+ γnNn ⊗Nn. (5)

Here, Nc, Nl and Nn are the circumferential, longitu-
dinal and wall-thickness direction of the gastric wall,
respectively, and αc, αl are material parameters. The
excitation-contraction coupling is realized by the acti-
vation parameter γ via a Heaviside-type function γ =
γ(vm), where γn ensures incompressibility of the tissue
under contraction. A finite element simulation of the
gastric wall as a coupled system including the propaga-
tion of electric slow waves, the passive elasticity, and the
active muscular tension (controlled by the electric slow
waves) is presented in Figure 4. For more detailed mod-
els of the active muscle tension in the gastro-intestinal
wall, the reader is referred to [20, 15].

Figure 4: Computational active strain electromechani-
cal model of and idealized cylindrical stomach geometry
showing travelling phasic contraction waves of peristal-
sis, adapted from [7], licensed under CC BY 4.0 (cre-
ativecommons.org/licenses/by/4.0/legalcode)

6 Multi-phase flow of digesta

Mixing and grinding of the digesta in the stomach has
been simulated so far only on the basis of highly sim-
plified Newtonian or Non-Newtonian fluid models [11].
In reality, however, digesta are typically complex multi-
phasic materials consisting of one or several fluid phases
as well as of one or several solid phases, for example,

food particles that are mechanically and chemically de-
graded in the stomach. Computational modeling of these
aspects can help to understand the mechanical aspects
and possibly also origins of certain gastric pathologies.
It appears that much could be achieved in the future in
this area of biomechanics by simply transferring progress
that has been made in other areas of computational fluid
mechanics over the past two decades to the specific prob-
lem of gastric mechanics.

7 Fluid-structure interactions

So far there is only a very limited number of studies of
the fluid mechanics of the digesta in the stomach. These
studies are not only limited to simple fluid models but
additionally they all prescribe the motion of the gastric
wall in a rigid form. Fluid-structure interactions between
the digesta and the elastic gastric wall have not yet been
modeled. It is well-known that these play key roles in
the process of digestion in general and also in the com-
plex hormonal control loops regulating food intake in
particular. However, computational modeling of fluid-
structure interactions in the stomach is much more chal-
lenging than, for example, in arteries or also the heart.
The reasons for this are the extreme deformations of the
stomach during ingestion and digestion of food and more-
over also the above-mentioned multi-phase character of
the digesta. The development of computational models
overcoming these difficulties is a promising area of in-
vestigation for researchers with a strong background in
fluid-structure interactions and computational fluid dy-
namics.

8 Conclusions

While the importance of the gastro-intestinal tract for
healthcare is in many aspects comparable to the one of
the cardio-vascular system, the research efforts spent on
the latter by far surpass the ones spent on the former.
One of the reasons is most likely the direct relation of
the heart and blood vessels to mortality against which
the enduring morbidity often caused by gastro-intestinal
pathologies is often neglected. As a consequence, compu-
tational modeling of the stomach is so far one of the most
underrated fields of computational biomechanics. Thus,
for researchers with a background in computational me-
chanics it offers rich opportunities. In the domain of solid
mechanics, these are mainly related to the development
of multi-scale models relating cellular to continuum-scale
processes. In the domain of fluid mechanics, model-
ing the multi-phase flow of the digesta as well as fluid-
structure interactions between the digesta and the gastric
wall are promising areas of research. Computer simula-
tions of these aspects can not only help to understand

Figure 2: Spatiotemporal plot of slow electrical wave propagation in ICC (left) and SMC (right) in a one-dimensional
domain used for testing purposes. Slow waves in SMC follow the excitation by ICC with a small delay and reduced
amplitude; adapted from [7], licensed under CC BY 4.0 (creativecommons.org/licenses/by/4.0/legalcode).

Figure 3: Generation and propagation of stable ring-shaped slow electric waves in ICC on an idealized cylindrical
stomach geometry (upper row). At t=500s, a perturbation of gastric electrophysiology modeling, for example,
a pathological change of the gastric wall, is simulated by the addition of a conduction block. It results in the
formation of a spiral-like pattern (lower row) and associated disordered peristaltic contractions of the stomach;
illustration created by Christian J. Cyron and Sebastian Brandstaeter, licensed under CC BY 4.0 (creativecom-
mons.org/licenses/by/4.0/legalcode)
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can be decomposed multiplicatively via

F = FeFa (4)

into an inelastic part Fa representing the load-free state
of the tissue in the presence of a certain muscular ten-
sion, and a remaining elastic part Fe. The latter ensures
geometric compatibility of the deformation of the stom-
ach as a whole, and the strain energy W in Eq. (1) solely
depends on this elastic part. The first active strain model
of the gastric wall stress was introduced by [7], using

Fa = I− γ(αcNc ⊗Nc +αlNl ⊗Nl)+ γnNn ⊗Nn. (5)

Here, Nc, Nl and Nn are the circumferential, longitu-
dinal and wall-thickness direction of the gastric wall,
respectively, and αc, αl are material parameters. The
excitation-contraction coupling is realized by the acti-
vation parameter γ via a Heaviside-type function γ =
γ(vm), where γn ensures incompressibility of the tissue
under contraction. A finite element simulation of the
gastric wall as a coupled system including the propaga-
tion of electric slow waves, the passive elasticity, and the
active muscular tension (controlled by the electric slow
waves) is presented in Figure 4. For more detailed mod-
els of the active muscle tension in the gastro-intestinal
wall, the reader is referred to [20, 15].

Figure 4: Computational active strain electromechani-
cal model of and idealized cylindrical stomach geometry
showing travelling phasic contraction waves of peristal-
sis, adapted from [7], licensed under CC BY 4.0 (cre-
ativecommons.org/licenses/by/4.0/legalcode)

6 Multi-phase flow of digesta

Mixing and grinding of the digesta in the stomach has
been simulated so far only on the basis of highly sim-
plified Newtonian or Non-Newtonian fluid models [11].
In reality, however, digesta are typically complex multi-
phasic materials consisting of one or several fluid phases
as well as of one or several solid phases, for example,

food particles that are mechanically and chemically de-
graded in the stomach. Computational modeling of these
aspects can help to understand the mechanical aspects
and possibly also origins of certain gastric pathologies.
It appears that much could be achieved in the future in
this area of biomechanics by simply transferring progress
that has been made in other areas of computational fluid
mechanics over the past two decades to the specific prob-
lem of gastric mechanics.

7 Fluid-structure interactions

So far there is only a very limited number of studies of
the fluid mechanics of the digesta in the stomach. These
studies are not only limited to simple fluid models but
additionally they all prescribe the motion of the gastric
wall in a rigid form. Fluid-structure interactions between
the digesta and the elastic gastric wall have not yet been
modeled. It is well-known that these play key roles in
the process of digestion in general and also in the com-
plex hormonal control loops regulating food intake in
particular. However, computational modeling of fluid-
structure interactions in the stomach is much more chal-
lenging than, for example, in arteries or also the heart.
The reasons for this are the extreme deformations of the
stomach during ingestion and digestion of food and more-
over also the above-mentioned multi-phase character of
the digesta. The development of computational models
overcoming these difficulties is a promising area of in-
vestigation for researchers with a strong background in
fluid-structure interactions and computational fluid dy-
namics.

8 Conclusions

While the importance of the gastro-intestinal tract for
healthcare is in many aspects comparable to the one of
the cardio-vascular system, the research efforts spent on
the latter by far surpass the ones spent on the former.
One of the reasons is most likely the direct relation of
the heart and blood vessels to mortality against which
the enduring morbidity often caused by gastro-intestinal
pathologies is often neglected. As a consequence, compu-
tational modeling of the stomach is so far one of the most
underrated fields of computational biomechanics. Thus,
for researchers with a background in computational me-
chanics it offers rich opportunities. In the domain of solid
mechanics, these are mainly related to the development
of multi-scale models relating cellular to continuum-scale
processes. In the domain of fluid mechanics, model-
ing the multi-phase flow of the digesta as well as fluid-
structure interactions between the digesta and the gastric
wall are promising areas of research. Computer simula-
tions of these aspects can not only help to understand

Figure 2: Spatiotemporal plot of slow electrical wave propagation in ICC (left) and SMC (right) in a one-dimensional
domain used for testing purposes. Slow waves in SMC follow the excitation by ICC with a small delay and reduced
amplitude; adapted from [7], licensed under CC BY 4.0 (creativecommons.org/licenses/by/4.0/legalcode).

Figure 3: Generation and propagation of stable ring-shaped slow electric waves in ICC on an idealized cylindrical
stomach geometry (upper row). At t=500s, a perturbation of gastric electrophysiology modeling, for example,
a pathological change of the gastric wall, is simulated by the addition of a conduction block. It results in the
formation of a spiral-like pattern (lower row) and associated disordered peristaltic contractions of the stomach;
illustration created by Christian J. Cyron and Sebastian Brandstaeter, licensed under CC BY 4.0 (creativecom-
mons.org/licenses/by/4.0/legalcode)
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