
Lucian P. Smith*, Stuart L. Moodie, Frank T. Bergmann, Colin Gillespie,
SarahM. Keating, Matthias König, Chris J. Myers, Maciek J. Swat, Darren J. Wilkinson
and Michael Hucka

Systems Biology Markup Language (SBML)
Level 3 Package: Distributions, Version 1,
Release 1
https://doi.org/10.1515/jib-2020-0018
Received April 4, 2020; accepted April 17, 2020; published online July 20, 2020

Abstract: Biological models often contain elements that have inexact numerical values, since they are based
on values that are stochastic in nature or data that contains uncertainty. The Systems Biology Markup Lan-
guage (SBML) Level 3 Core specification does not include an explicit mechanism to include inexact or sto-
chastic values in amodel, but it does provide amechanism for SBML packages to extend the Core specification
and add additional syntactic constructs. The SBML Distributions package for SBML Level 3 adds the necessary
features to allow models to encode information about the distribution and uncertainty of values underlying a
quantity.

Keywords: distributions; modeling; SBML; systems biology; uncertainty.

*Corresponding author: Lucian P. Smith, University of Washington, Seattle, USA, E-mail: lpsmith@uw.edu. https://orcid.org/
0000-0001-7002-6386
Stuart L.Moodie: Eight Pillars Ltd, Edinburgh, UK, E-mail: stuart.moodie@eightpillars.uk.com. https://orcid.org/0000-0001-6191-
5595
Frank T. Bergmann:University of Heidelberg, Heidelberg, Germany, E-mail: frank.bergmann@bioquant.uni-heidelberg.de. https://
orcid.org/0000-0001-5553-4702
Colin Gillespie and Darren J. Wilkinson: Newcastle University, Newcastle, UK, E-mail: colin.gillespie@ncl.ac.uk (C. Gillespie),
darrenjwilkinson@googlemail.com (D.J. Wilkinson). https://orcid.org/0000-0003-1787-0275 (C. Gillespie). https://orcid.org/
0000-0003-0736-802X (D.J. Wilkinson)
Sarah M. Keating: University College London, London, UK, E-mail: s.keating@ucl.ac.uk. https://orcid.org/0000-0002-3356-3542
Matthias König:Humboldt-University Berlin, Berlin, Germany, E-mail: konigmatt@googlemail.com. https://orcid.org/0000-0003-
1725-179X
Chris J. Myers: University of Utah, Salt Lake City, USA, E-mail: myers@ece.utah.edu. https://orcid.org/0000-0002-8762-8444
Maciek J. Swat: QSP Simcyp, Sheffield, UK, E-mail: maciej.swat@gmail.com
Michael Hucka: California Institute of Technology, Pasadena, USA, E-mail: mhucka@library.caltech.edu. https://orcid.org/0000-
0001-9105-5960

Journal of Integrative Bioinformatics 2020; 17(2–3): 20200018

Open Access. © 2020 Lucian P. Smith et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 Public License.

https://doi.org/10.1515/jib-2020-0018
mailto:lpsmith@uw.edu
https://orcid.org/0000-0001-7002-6386
https://orcid.org/0000-0001-7002-6386
mailto:stuart.moodie@eightpillars.uk.com
https://orcid.org/0000-0001-6191-5595
https://orcid.org/0000-0001-6191-5595
mailto:frank.bergmann@bioquant.uni-heidelberg.de
https://orcid.org/0000-0001-5553-4702
https://orcid.org/0000-0001-5553-4702
mailto:colin.gillespie@ncl.ac.uk
mailto:darrenjwilkinson@googlemail.com
https://orcid.org/0000-0003-1787-0275
https://orcid.org/0000-0003-0736-802X
https://orcid.org/0000-0003-0736-802X
mailto:s.keating@ucl.ac.uk
https://orcid.org/0000-0002-3356-3542
mailto:konigmatt@googlemail.com
https://orcid.org/0000-0003-1725-179X
https://orcid.org/0000-0003-1725-179X
mailto:myers@ece.utah.edu
https://orcid.org/0000-0002-8762-8444
mailto:maciej.swat@gmail.com
mailto:mhucka@library.caltech.edu
https://orcid.org/0000-0001-9105-5960
https://orcid.org/0000-0001-9105-5960

SBML Level 3 Package Specification

The Distributions Package
for SBML Level 3

Authors

Lucian P Smith Stuart L Moodie
University of Washington Eight Pillars Ltd

Seattle, WA, USA Edinburgh, UK

Contributors

Frank Bergmann Colin Gillespie
University of Heidelberg University of Newcastle

Heidelberg,DE Newcastle, UK

Sarah Keating Matthias König
University College London Humboldt University

London, UK Berlin, DE

Chris Myers Maciej J Swat
University of Utah QSP Simcyp

Salt Lake City, UT, USA Certara, Sheffield, UK

Darren Wilkinson Michael Hucka
University of Newcastle California Institute of Technology

Newcastle, UK Pasadena, CA, USA

Version 1, Release 1

April 2, 2020

The latest release, past releases, and other materials related to this specification are available at
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/distrib

This release of the specification is available at
https://co.mbine.org/specifications/sbml.level-3.version-1.distrib.version-1.release-1

Contents
1 Introduction and motivation 5

1.1 What is the Distributions package? . 5
1.2 Scope . 5
1.3 This document . 5

2 Background 6
2.1 Problems with current SBML approaches . 6
2.2 Past work on this problem or similar topics . 6

2.2.1 Newcastle Proposal 2005 . 6
2.2.2 SBML Hackathon 2010: Seattle . 6
2.2.3 Statistical Models Workshop 2011: Hinxton . 7
2.2.4 HARMONY 2012: Maastricht . 8
2.2.5 COMBINE 2012: Toronto . 8
2.2.6 Package Working Group discussions 2013 . 8
2.2.7 HARMONY 2013: Connecticut . 8
2.2.8 HARMONY 2017: Seattle . 9
2.2.9 HARMONY 2018: Oxford . 9
2.2.10 HARMONY 2019: Pasadena . 9

3 Proposed syntax and semantics 10
3.1 Overview . 10
3.2 Namespace URI and other declarations necessary for using this package . 10
3.3 Primitive data types . 11

3.3.1 Type ExternalRef . 11
3.3.2 Type UncertKind . 11

3.4 Defining Distributions . 12
3.4.1 The approach . 12

3.5 Extended Math . 12
3.6 Discrete vs. continuous sampling . 13
3.7 Examples using the extended csymbol element . 14

3.7.1 Using a normal distribution . 14
3.7.2 Defining a truncated normal distribution . 15
3.7.3 Defining conditional events . 15

3.8 The DistribBase class . 17
3.9 The extended SBase class . 17
3.10 The Uncertainty class . 18

3.10.1 Attributes inherited from SBase . 19
3.11 The UncertParameter class . 19

3.11.1 The type attribute . 19
3.11.2 The value and var attributes . 20
3.11.3 The units attribute . 20
3.11.4 The definitionURL attribute . 21
3.11.5 Attributes inherited from SBase . 21
3.11.6 The child math element . 21
3.11.7 The child ListOfUncertParameters element . 21

3.12 The UncertSpan class . 21
3.13 The different UncertParameter and UncertSpan type values. 21
3.14 The uncertainty of a Species . 25
3.15 Examples using Uncertainty . 26

3.15.1 Basic Uncertainty example . 26
3.15.2 Defining a random variable . 26
3.15.3 Defining external distributions . 27

4 Interaction with other packages 29
4.1 Custom annotations for function definitions . 29
4.2 The Arrays package . 30
4.3 SBML Level 3 Version 2 . 30
4.4 Other SBML Level 3 Packages . 31

5 Use-cases and examples 32
5.1 Sampling from a distribution: PK/PD Model . 32
5.2 Multiple uses of distributions . 34
5.3 Defining confidence intervals . 34

A Validation of SBML documents 37
A.1 Validation and consistency rules . 37

Page 2 of 44

Section Contents

B Acknowledgments 43
References 44

Section Contents Page 3 of 44

Revision History

The following table summarizes the history of this document.

Version Date Author Comments

0.1 (Draft) 15 Oct 2011 Stuart Moodie First draft

0.2 (Draft) 16 Oct 2011 Stuart Moodie Added introductory text and background info. Other minor changes etc.

0.3 (Draft) 16 Oct 2011 Stuart Moodie Filled empty invocation semantics section.

0.4 (Draft) 4 Jan 2012 Stuart Moodie Incorporated comments from Nicolas, Maciej and Sarah. Some minor
revisions and corrections.

0.5 (Draft) 6 Jan 2012 Stuart Moodie Incorporated addition comments on aim of package from Nicolas.

0.6 (Draft) 19 Jul 2012 Stuart Moodie Incorporated revisions discussed and agreed at HARMONY 2012.

0.7 (Draft) 6 Aug 2012 Stuart Moodie Incorporated review comments from Maciej and Sarah.

0.8 (Draft) 21 Dec 2012 Stuart Moodie Incorporated changes suggested at combine and subsequently through
list discussions.

0.9 (Draft) 9 Jan 2013 Stuart Moodie Incorporated corrections and comments from Maciej and Sarah.

0.10 (Draft) 10 Jan 2013 Stuart Moodie Modified based on comments from Maciej.

0.11 (Draft) 17 May 2013 Lucian Smith Modified based on Stuart’s proposals and PWG discussion.

0.12 (Draft) June 2013 Lucian Smith and
Stuart Moodie

Modified based on HARMONY 2013 discussion.

0.13 (Draft) July 2013 Lucian Smith and
Stuart Moodie

Modified based PWG discussion, particularly with respect to UncertML.

0.14 (Draft) March 2015 Lucian Smith Modified to match UncertML 3.0.

0.15 (Draft) March 2015 Lucian Smith and
Sarah Keating

Modified to match UncertML 3.0 for real this time.

0.16 (Draft) March 2015 Lucian Smith Added information about UncertML 3.0 distributions, and the distributions
custom annotations.

0.17 (Draft) June 2017 Lucian Smith Extensive update to reflect demise of UncertML 3.0, and appearance of
ProbOnto.

0.18 (Draft) June 2017 Lucian Smith Fixes to reflect feedback on version 0.17.

0.19 (Draft) June 2018 Lucian Smith Resolved id/name issues with SBML Core L3V1 vs. L3V2.

0.20 (Draft) December 2018 Lucian Smith Updates to allow distributions as new MathML csymbols.

0.21 (Draft) January 2019 Lucian Smith Revisions based on suggestions from sbml-distrib, including extensive
edits from Matthias. Extended function definitions removed.

0.22 (Draft) February 2019 Lucian Smith Addition of sampleSize and mean values of distributions for fallback.

0.23 (Draft) February 2019 Lucian Smith and
Michael Hucka

Removal of Distribution and all subclasses; replaced with a Math element
instead; collapsed UncertStatistics into Uncertainty; some other edits.

0.24 (Draft) April 2019 Lucian Smith Removal of second distrib namespace, and consolidation of the Uncert-
Parameter class based on HARMONY 2019 discussions.

0.25 (Draft) July 2019 Lucian Smith The id of a UncertParameter no longer has mathematical meaning in
any other context.

0.26 (Release
Candidate)

March 2020 Lucian Smith Add validation rules, and other corrections for release candidate.

1.0 (Release) April 2020 Lucian Smith Add qual example and adjust wording based on feedback from SBML
Editors.

Section Contents Page 4 of 44

1 Introduction and motivation

1.1 What is the Distributions package?

The Distributions package (also known as distrib) provides an extension to SBML Level 3 that extends MathML to

allow draws from distributions, and also provides the ability to annotate model elements with information about

the distribution their values were drawn from.

1.2 Scope

The Distributions package adds support to SBML for sampling from a probability distribution. In particular the

following are in scope:

■ Sampling from a univariate continuous distribution

■ Sampling from a univariate discrete distribution

■ Specification of descriptive statistics (mean, standard deviation, standard error, etc.)

At one point the following were considered for inclusion in this package but are now out of scope:

■ Sampling from a multivariate distribution

■ Definitions of ranges as new first-order objects (the ’Arrays’ package now fills that objective)

■ Sampling from user-defined probability density function

■ Stochastic differential equations

■ Other functions used to characterise a probability distribution, such as cumulative distribution functions

(CDF) or survival functions, etc.

1.3 This document

This draft specification describes the consensus view of workshop participants and subscribers to the sbml-distrib

mailing list. Although it was written by the listed authors, it does not solely reflect their views nor is it their

proposal alone. Rather, it is their understanding of the consensus view of what the Distributions package should

do and how it should do it. The contributors listed have made significant contributions to the development and

writing of this specification and are credited accordingly, but a more comprehensive attribution is provided in the

acknowledgments (Appendix B on page 43).

Section Contents Page 5 of 44

2 Background

2.1 Problems with current SBML approaches

SBML Level 3 Core has no direct support for encoding values sampled from distributions. Currently there is no

workaround within the core SBML language itself, although it is possible to define the necessary information using

annotations on SBML elements. Frank Bergmann proposed such an annotation scheme for use with SBML Levels

2 and 3 (see Section 4.1 on page 29).

2.2 Past work on this problem or similar topics

2.2.1 Newcastle Proposal 2005

In 2005, Colin Gillespie and others put forward a proposal 1 to introduce support for probability distributions in

the SBML core specification. This was based on their need to use such distributions to represent the models they

were creating as part of the BASIS project (http://www.basis.ncl.ac.uk). They proposed that distributions be

referred to in SBML using the csymbol element in the MathML subset used by the SBML Core specification. An

example is below:

<math xmlns=’’http://www.w3.org/1998/Math/MathML’’>

<apply>

<csymbol encoding=’’text’’

definitionURL=’’http://www.sbml.org/sbml/symbols/uniformRandom’’>

uniformRandom

</csymbol>

<ci>mu</ci>

<ci>sigma</ci>

</apply>

</math>

This required that a library of definitions be maintained as part of the SBML standard and in their proposal they

defined an initial small set of commonly used distributions. The proposal was never implemented.

2.2.2 SBML Hackathon 2010: Seattle

The “distrib” package was discussed at the Seattle SBML Hackathon2 and this section is an almost verbatim

reproduction of Darren Wilkinson’s report on the meeting3. In the meeting, Darren presented an overview of the

problem45, building on the old proposal from the Newcastle group (see above: Section 2.2.1). There was broad

support at the meeting for development of such a package, and for the proposed feature set. Discussion following

the presentation led to consensus on the following points:

■ There is an urgent need for such a package.

■ It is important to make a distinction between a description of uncertainty regarding a model parameter and

the mechanistic process of selecting a random number from a probability distribution, for applications such

as parameter scans and experimental design

■ It is probably worth including the definition of PMFs, PDFs and CDFs in the package

■ It is worth including the definition of random distributions using particle representations within such a

package, though some work still needs to be done on the precise representation

1http://sbml.org/Community/Wiki/SBML_Leve\T1\l_3_Proposals/Distributions_and_Ranges
2http://sbml.org/Events/Hackathons/The_2010_SBML-BioModels.net_Hackathon
3http://sbml.org/Forums/index.php?t=tree&goto=6141&rid=0
4Slides: http://sbml.org/images/3/3b/Djw-sbml-hackathon-2010-05-04.pdf
5Audio: http://sbml.org/images/6/67/Wilkinson-distributions-2010-05-04.mov

Section Contents Page 6 of 44

Section 2. Background

■ It could be worth exploring the use of XML’s xinclude construct to point at particle representations held in a

separate file

■ Random numbers must not be used in rate laws or anywhere else that is continuously evaluated, as then

simulation behaviour is not defined

■ Although there is a need for a package for describing extrinsic noise via stochastic differential equations in

SBML, such mechanisms should not be included in this package due to the considerable implications for

simulator developers

■ We probably don’t want to layer on top of UncertML (www.uncertml.org), as this spec is fairly heavy-weight,

and somewhat tangential to our requirements

■ A random number seed is not part of a model and should not be included in the package

■ The definition of truncated distributions and the specification of hard upper and lower bounds on random

quantities should be considered.

It was suggested that new constructs could be introduced into SBML via user-defined functions by embedding

“distrib” constructs in a manner illustrated by the following example:

<listOfFunctionDefinitions>

<functionDefinition id="myNormRand">

<distrib:####>

distrib binding information here

</distrib:####>

<math>

<lambda>

<bvar>

<ci>mu</ci>

<ci>sigma</ci>

</bvar>

<ci>mu</ci>

</lambda>

</math>

</functionDefinition>

</listOfFunctionDefinitions>

This approach allows the use of a “default value” by simulators which do not understand the package (but simulators

which do will ignore the <math> element). The package would nevertheless be “required”, as it will not be simulated

correctly by software which does not understand the package.

Informal discussions following the break-out covered topics such as:

■ how to work with vector random quantities despite that SBML does not use the vector element from MathML

■ how care must be taken with the semantics of random variables and the need to both:

• reference multiple independent random quantities at a given time

• make multiple references to the same random quantity at a given time

2.2.3 Statistical Models Workshop 2011: Hinxton

Detailed discussion was continued at the Statistical Models Workshop in Hinxton in June 20116. There, people

interested in representing statistical models in SBML came together to work out the details of how this package

would work in detail. Dan Cornford from the UncertML project7 attended the meeting and described how UncertML

could be used to describe uncertainty and in particular probability distributions. Perhaps the most significant

6http://sbml.org/Events/Other_Events/statistical_models_workshop_2011
7http://www.uncertml.org/

Section Contents Page 7 of 44

Section 2. Background

decision at this meeting was to adopt the UncertML resource as a controlled vocabulary that is referenced by the

Distributions package.

Much has changed since this meeting, but the output from this meeting was the basis for the first version of the

“distrib” draft specification.

2.2.4 HARMONY 2012: Maastricht

Two sessions were dedicated to discussion of Distributions at HARMONY based around the proposals described in

version 0.5 of this document. In addition there was discussion about the Arrays proposal which was very helpful in

solving the problem of multivariate distributions in Distributions. The following were the agreed outcomes of the

meeting:

■ The original “distrib” draft included UncertML markup directly in the function definition. This proved

unwieldy and confusing and has been replaced by a more elegant solution that eliminates the UncertML

markup and integrates well with the fallback function (see details below).

■ Multivariate distributions can be supported using the Arrays package to define a covariance matrix.

■ User defined continuous distributions would define a PDF in MathML.

■ Usage semantics were clarified so that invokation of a function definition implied a value was sampled from

the specified distribution.

■ It was agreed from which sections of an SBML model a distribution could be invoked.

■ Statistical descriptors of variables (for example mean and standard deviation) would be separated from

Distributions and either provided in a new package or in a later version of SBML L3 core.

2.2.5 COMBINE 2012: Toronto

The August draft of “distrib” was reviewed, and an improvement was agreed upon in the user-defined PMF part

of the proposal. In particular, is was agreed that the categories should be defined by distrib classes rather than

by passing in the information as an array. Questions were also raised about whether UncertML was suitably well

defined to be used as an external definition for probability distributions. This was resolved subsequent to the

meeting with a teleconference to Dan Cornford and colleagues. These changes are incorporated here. Finally, there

was considerable debate about whether to keep the dependence of distrib on the Arrays package in order to support

multi-variate distributions. The outcome was an agreement that we would review this at the end of 2012, based on

the results of an investigation into how feasible it would be to implement Arrays as a package.

2.2.6 Package Working Group discussions 2013

Early 2013 saw a good amount of discussion on the distrib Package Working Group mailing list, spurred by proposals

by Stuart Moodie8. While not all of his suggestions ended up being fully accepted by the group, several changes

were accepted, including:

■ To use UncertML as actual XML, instead of as a set of reference definitions.

■ To use UncertML to encode descriptive statistics of SBML elements such as mean, standard deviation,

standard error, etc.) bringing this capability back in scope for this package.

2.2.7 HARMONY 2013: Connecticut

At the HARMONY held at the University of Connecticut Health Center, further discussions revealed the importance

of distinguishing the ability to describe an element as a distributed variable vs. a function call within the model

performing a draw from a distribution.

8http://thestupott.wordpress.com/2013/03/12/an-improved-distrib-proposal/

Section Contents Page 8 of 44

Section 2. Background

We also decided to discard the encoding of explicit PDFs for now, as support for it is remarkably complicated, and

there no demand for it. The current design could be extended to support this feature so if there is demand for it in

the future support for explicit PDFs could be reintroduced.

2.2.8 HARMONY 2017: Seattle

In early 2017, it became clear that UncertML was no longer being worked on; the web page had lapsed, and its authors

had moved on to other things. At the same time, the ProbOnto ontology (Swat et al. 2016; http://probonto.org/)

was developed that included all the distributions from UncertML as well as a huge number of other distributions.

On the “distrib” mailing list, there was discussion about whether to create essentially our own version of UncertML,

or to implement a generic “reference” format that used ProbOnto. The v0.17 draft specification was developed

as a compromise ’hybrid’ system that did parts of both, so that basic distributions would be hard-coded, but the

ability to reference any ProbOnto ontology would also be present. The hope is that with working examples of both

approaches, either the hybrid approach will be approved, or if one is preferred, the other approach may be removed.

This version of the specification was created for presentation at HARMONY 2017 in Seattle.

2.2.9 HARMONY 2018: Oxford

At the HARMONY held at the University of Oxford, for the first time since the change from UncertML, a libSBML

implementation of the specification was available. This let people experiment with the package, and conclude that

a simpler method of defining calls to distributions was desired. It was proposed to define new MathML csymbol

definitions for the common distributions. Eventually, these new csymbolswere used instead of the old Distribution

class, greatly simplifying the proposal.

2.2.10 HARMONY 2019: Pasadena

In the weeks leading up to the HARMONY held at Caltech, the PWG discussed various options for encoding

uncertainties, based on different people’s requirements. At HARMONY, we were able to coalesce around an approach

that seems likely to work for everyone, with multiple uncertainties per element, and a single UncertParameter class

with a type that encapsulates what used to be encoded in an element’s class.

Section Contents Page 9 of 44

3 Proposed syntax and semantics

3.1 Overview

We use UML 1.0 (Unified Modeling Language; Eriksson and Penker 1998; Oestereich 1999) class diagram notation to

define the constructs provided by this package. We also use color in the diagrams to provide additional information

for the benefit of those viewing the document on media that can display color. The following are the colors used

and what they represent:

Black: Items colored black in the UML diagrams are components taken unchanged from their definition in

the SBML Level 3 Core specification document.

Green: Items colored green are components that exist in SBML Level 3 Core, but are extended by this package.

Class boxes are also drawn with dashed lines to further distinguish them.

Blue: Items colored blue are new components introduced in this package specification. They have no

equivalent in the SBML Level 3 Core specification.

Red lines: Classes with red lines in the corner are fully defined in a different figure.

We also use the following typographical conventions to distinguish the names of objects and data types from other

entities; these conventions are identical to the conventions used in the SBML Level 3 Core specification document:

AbstractClass: Abstract classes are never instantiated directly, but rather serve as parents of other classes. Their

names begin with a capital letter and they are printed in a slanted, bold, sans-serif typeface. In electronic

document formats, the class names defined within this document are also hyperlinked to their definitions;

clicking on these items will, given appropriate software, switch the view to the section in this document

containing the definition of that class. (However, for classes that are unchanged from their definitions in

SBML Level 3 Core, the class names are not hyperlinked because they are not defined within this document.)

Class: Names of ordinary (concrete) classes begin with a capital letter and are printed in an upright, bold, sans-serif

typeface. In electronic document formats, the class names are also hyperlinked to their definitions in this

specification document. (However, as in the previous case, class names are not hyperlinked if they are for

classes that are unchanged from their definitions in the SBML Level 3 Core specification.)

SomeThing, otherThing: Attributes of classes, data type names, literal XML, and tokens other than SBML class

names, are printed in an upright typewriter typeface. Primitive types defined by SBML begin with a capital

letter; SBML also makes use of primitive types defined by XML Schema 1.0 (Biron and Malhotra, 2000; Fallside,

2000; Thompson et al., 2000), but unfortunately, XML Schema does not follow any capitalization convention

and primitive types drawn from the XML Schema language may or may not start with a capital letter.

[elementName]: In some cases, an element may contain a child of any class inheriting from an abstract base class.

In this case, the name of the element is indicated by giving the abstract base class name in brackets, meaning

that the actual name of the element depends on whichever subclass is used. The capitalization follows the

capitalization of the name in brackets.

For other matters involving the use of UML and XML, we follow the conventions used in the SBML Level 3 Core

specification document.

3.2 Namespace URI and other declarations necessary for using this package

Every SBML Level 3 package is identified uniquely by an XML namespace URI. For an SBML document to be able

to use a given Level 3 package, it must declare the use of that package by referencing its URI. This version of the

Distributions package uses the URI:

“http://www.sbml.org/sbml/level3/version1/distrib/version1”

Section Contents Page 10 of 44

Section 3. Proposed syntax and semantics

Note that the Distributions package may be used with both SBML Level 3 Version 1 and SBML Level 3 Version 2

documents, with no semantic changes between the two in any distrib element, due to the addition of id and name

to the DistribBase class.

In addition, SBML documents using a given package must indicate whether the package may be used to change the

mathematical meaning of SBML Level 3 Core elements. This is done using the attribute required on the <sbml>

element in the SBML document. For the Distributions package, the value of this attribute must be “true”, as it

defines new csymbols that may be used in any MathML. Note that the value of this attribute must always be set to

“true”, even if the particular model does not contain any of these csymbols.

The following fragment illustrates the beginning of a typical SBML model using SBML Level 3 Version 1 and this

version of the Distributions package:

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1"

distrib:required="true">

The following fragment illustrates the beginning of a typical SBML model using SBML Level 3 Version 2 and this

version of the Distributions package:

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version2/core" level="3" version="2"

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1"

distrib:required="true">

There is no difference between the ’distrib’ part of these documents, and all package semantics are identical.

XML Namespace use

For element names, XML has clear rules about how to declare and use namespaces. In typical SBML documents, the

Distributions namespace will be defined as above, and elements will therefore need to be prefixed with “distrib:”.

In contrast to element names, XML attribute names are completely defined by the element in which they appear,

and never have a “default” namespace defined. The element itself declares whether any attributes should be defined

with a namespace prefix.

Following the typical convention used by SBML packages, any attribute that appears in a UML diagram in this

specification may either be defined with no namespace prefix, or be defined with the distrib namespace as a prefix.

(No attributes are defined here as extentions of existing core SBML elements, and thus none of them are required to

have the distrib namespace as a prefix.)

3.3 Primitive data types

The Distributions package uses data types described in Section 3.1 of the SBML Level 3 Core specification, and adds

the additional primitive types described below.

3.3.1 Type ExternalRef

The type ExternalRef is derived from the type stringwith the additional requirement that it be a valid URI. An

ExternalRef is used in the UncertParameter class to point to ontologies such as ProbOnto (Swat et al., 2016), which

contain the definitions of distributions and parameters.

3.3.2 Type UncertKind

The type UncertKind is derived from the type string and its values are restricted to being one of the follow-

ing possibilities: “coefficientOfVariation”, “kurtosis”, “mean”, “median”, “mode”, “sampleSize”, “skewness”,

Section Contents Page 11 of 44

Section 3. Proposed syntax and semantics

“standardDeviation”, “standardError”, “variance”, “confidenceInterval”, “credibleInterval”, “inter-

quartileRange”, “range”, “externalParameter”, and “distribution”. Attributes of type UncertKind cannot

take on any other values. The meaning of these values is discussed in the context of the UncertParameter class’s

definition in Section 3.11 on page 19.

3.4 Defining Distributions

3.4.1 The approach

The Distributions package has two simple purposes. First, it provides a mechanism for sampling a random value

from a probability distribution. This implies that it must define the probability distribution and then must sample a

random value from that distribution. Second, it provides a mechanism for describing elements with information

about their uncertainty. An example use case for this is to provide the standard deviation for a value. Another might

be describing a parameter’s distribution so it could be used in a parameter scan experiment.

Sampling from probability distributions is achieved by allowing new MathML elements, and encoding uncertainty by

extending SBase, which in turn uses the Uncertainty class. Several distributions and statistics are defined explicitly

in this specification, but more can be defined by referencing an external ontology such as ProbOnto through the

UncertParameter class.

When a call to a distribution is defined in the extended Math, it is sampled when it is invoked. If a particular sampled

value should be used multiple times, that value must be assigned to a parameter first, such as through the use of an

InitialAssignment or EventAssignment. When an external distribution is defined, it is not used in the math of the

model, but may be used externally where appropriate.

3.5 Extended Math

To allow quick access to a variety of common functions, the Distributions package allows the use of new types of

csymbol elements anywhere that Math is used. These csymbols are functions, and therefore must be the first child

of an apply element, and their arguments are predefined: you cannot call normal(mean, variance), because the

definition of the normal csymbol is normal(mean, stdev).

The newly-allowed csymbol elements are defined in Table 1 on the next page.

Many of the distributions take exactly two or four arguments (or exactly one or three arguments). For those functions,

the optional last two arguments are min and max, for when the draw from the distribution is constrained to be

between those two values. For all functions, the min boundary is inclusive; that is, a value of min may be returned

by the function (though this may be very unlikely for draws from a continuous distribution). For all continuous

distributions, the max boundary is not inclusive; that is, a value of max will never be returned. The continuous

distributions are normal, cauchy, chisquare, exponential, gamma, laplace, lognormal, and rayleigh. For the

discrete distributions, the max boundary is inclusive: that is, a value of max may indeed be returned. The discrete

distributions are binomial and poisson.

The value of minmust be less than the value of max for all continuous distributions, and the value of minmust be

less than or equal to the value of max for all discrete distributions. Additionally, the min and max values of a discrete

distribution must span at least one integer between them, inclusive.

To define a distribution with only one bound, the other bound should be defined as INF or -INF, as appropriate.

For those distributions that have an intrisic lower bound of 0, setting min to 0 or any negative number will have no

effect, but is legal.

The versions of cauchy and laplace with one argument draw from the corresponding distribution with that

argument as its scale value, and a value of “0” for its location.

Section Contents Page 12 of 44

Section 3. Proposed syntax and semantics

Table 1: The “definitionURL” values allowed for the csymbol of Math for documents that use the distrib package, and
the arguments those functions may take.

URI Possible arguments

http://www.sbml.org/sbml/symbols/distrib/normal normal(mean, stdev)
normal(mean, stdev, min, max)

http://www.sbml.org/sbml/symbols/distrib/uniform uniform(min, max)

http://www.sbml.org/sbml/symbols/distrib/bernoulli bernoulli(prob)

http://www.sbml.org/sbml/symbols/distrib/binomial binomial(nTrials, probabilityOfSuccess)
binomial(nTrials, probabilityOfSuccess, min, max)

http://www.sbml.org/sbml/symbols/distrib/cauchy cauchy(scale)
cauchy(location, scale)
cauchy(location, scale, min, max)

http://www.sbml.org/sbml/symbols/distrib/chisquare chisquare(degreesOfFreedom)
chisquare(degreesOfFreedom, min, max)

http://www.sbml.org/sbml/symbols/distrib/exponential exponential(rate)
exponential(rate, min, max)

http://www.sbml.org/sbml/symbols/distrib/gamma gamma(shape, scale)
gamma(shape, scale, min, max)

http://www.sbml.org/sbml/symbols/distrib/laplace laplace(scale)
laplace(location, scale)
laplace(location, scale, min, max)

http://www.sbml.org/sbml/symbols/distrib/lognormal lognormal(mean, stdev)
lognormal(mean, stdev, min, max)

http://www.sbml.org/sbml/symbols/distrib/poisson poisson(rate)
poisson(rate, min, max)

http://www.sbml.org/sbml/symbols/distrib/rayleigh rayleigh(scale)
rayleigh(scale, min, max)

Fallback functions

If an SBML interpreter is unable to calculate one or more of the above extended MathML functions, it may simply

fail, or it might choose to return the mean of the given function instead. In either case, it is a good idea to inform the

user that the model cannot be interpreted by the software as intended. Note that the mean of a discrete distribution

is not necessarily a legal return value for that function, as it may not be an integer.

The mean values in Table 2 on the following page may be used as a fallback for software that cannot perform draws

from a distribution. Note that truncated versions of these functions will have different means. Note also that the

cauchy distribution has no mean, by definition.

3.6 Discrete vs. continuous sampling

MathML csymbols may be used in SBML Level 3 Core in both discrete and continuous contexts: InitialAssignment,

EventAssignment, Priority, and Delay elements are all discrete, while Rule, KineticLaw, and Trigger elements are

all continuous in time. For discrete contexts, the behavior of distrib-extended FunctionDefinition elements is well-

defined: a single random value is sampled from the distribution each time the function definition is invoked. Each

invocation implies one sampling operation. In continuous contexts, however, their behavior is ill-defined. More

information than is defined in this package (such as autocorrelation values or full conditional probabilities) would

Section Contents Page 13 of 44

Section 3. Proposed syntax and semantics

Table 2: The mean values for the non-truncated versions of the distribution functions. These values could potentially be
used as a fallback for simulators which are not able to draw from the distributions themselves.

Function Fallback (mean)

normal(mean, stdev) mean

uniform(min, max)
min+max

2

bernoulli(prob) prob

binomial(nTrials, probabilityOfSuccess) nTrials ×probabilityOfSuccess

cauchy(location, scale) undefined

chisquare(degreesOfFreedom) degreesOfFreedom

exponential(rate) rate−1

gamma(shape, scale) shape × scale

laplace(location, scale) location

lognormal(mean, stdev) exp(mean+ stdev2/2)

poisson(rate) rate

rayleigh(scale) scale
p
π/2

be required to make random sampling tractable in continuous contexts, and is beyond the scope of this version

of the package. If some package is defined in the future that adds this information, or if custom annotations are

provided that add this information, such models may become simulatable. However, this package does not define

how to handle sampling in continuous contexts, and recommends against it: a warning may be produced by any

software encountering the use of a distrib-extended MathML in a continuous context. Assuming such models are

desirable, and the information is not provided in a separate package, this information may be incorporated into a

future version of this specification.

Any other package that defines new contexts for MathML will also be either discrete or continuous. Discrete

situations (such as those defined in the SBML Level 3 Qualitative Models package) are, as above, well-defined.

Continuous situations (as might arise within the Spatial Processes package, over space instead of over time) will most

likely be ill-defined. Those packages must therefore either define for themselves how to handle distrib-extended

MathML elements, or leave it to some other package/annotation scheme to define how to handle the situation.

3.7 Examples using the extended csymbol element

Several examples are given below that illustrate various uses of the new csymbol elements introduced by distrib.

3.7.1 Using a normal distribution

In this example, the initial value of y is set as a draw from the normal distribution nor mal (z,10):

<initialAssignment symbol="y">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/normal"

encoding="text"> normal </csymbol>

<ci> z </ci>

<cn> 10 </cn>

</apply>

</math>

</initialAssignment>

Section Contents Page 14 of 44

Section 3. Proposed syntax and semantics

This use would apply a draw from a normal distribution with mean z and standard deviation 10 to the symbol y.

3.7.2 Defining a truncated normal distribution

When used with four arguments instead of two, the normal distribution is truncated to nor mal (z,10, z −2, z +2):

<initialAssignment symbol="y">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/normal"

encoding="text"> normal </csymbol>

<ci> z </ci>

<cn type="integer"> 10 </cn>

<apply>

<minus/>

<ci> z </ci>

<cn type="integer"> 2 </cn>

</apply>

<apply>

<plus/>

<ci> z </ci>

<cn type="integer"> 2 </cn>

</apply>

</apply>

</math>

</initialAssignment>

This use would apply a draw from a normal distribution with mean z, standard deviation 10, lower bound z − 2

(inclusive) and upper bound z + 2 (not inclusive) to the SBML symbol y.

3.7.3 Defining conditional events

Simultaneous events in SBML are ordered based on their Priority values, with higher values being executed first,

and potentially cancelling events that fire after them. In this example, two simultaneous events have priorities

set with csymbols defined in distrib. The event E0 has a priority of uni f or m(0,1), while the event E1 has a

priority of uni f or m(0,2). This means that 75% of the time, event E1will have a higher priority than E0, and will

fire first, assigning a value of 5 to parameter x. Because this negates the trigger condition for E0, which is set

persistent=“false”, this means that E0 never fires, and the value of x remains at 5. The remaining 25% of the

time, the reverse happens, with E0 setting the value of x to 3 instead.

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version2/core"

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1"

level="3" version="2" distrib:required="true">

<model metaid="__main" id="__main">

<listOfParameters>

<parameter metaid="__main.x" id="x" value="0" constant="false"/>

</listOfParameters>

<listOfEvents>

<event id="E0" useValuesFromTriggerTime="true">

<trigger initialValue="true" persistent="false">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<and/>

<apply>

<gt/>

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/time">

time </csymbol>

<cn type="integer"> 2 </cn>

</apply>

<apply>

<lt/>

Section Contents Page 15 of 44

Section 3. Proposed syntax and semantics

<ci> x </ci>

<cn type="integer"> 1 </cn>

</apply>

</apply>

</math>

</trigger>

<priority>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/uniform"

encoding="text"> uniform </csymbol>

<cn type="integer"> 0 </cn>

<cn type="integer"> 1 </cn>

</apply>

</math>

</priority>

<listOfEventAssignments>

<eventAssignment variable="x">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<cn type="integer"> 3 </cn>

</math>

</eventAssignment>

</listOfEventAssignments>

</event>

<event id="E1" useValuesFromTriggerTime="true">

<trigger initialValue="true" persistent="false">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<and/>

<apply>

<gt/>

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/time">

time </csymbol>

<cn type="integer"> 2 </cn>

</apply>

<apply>

<lt/>

<ci> x </ci>

<cn type="integer"> 1 </cn>

</apply>

</apply>

</math>

</trigger>

<priority>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/uniform"

encoding="text"> uniform </csymbol>

<cn type="integer"> 0 </cn>

<cn type="integer"> 2 </cn>

</apply>

</math>

</priority>

<listOfEventAssignments>

<eventAssignment variable="x">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<cn type="integer"> 5 </cn>

</math>

</eventAssignment>

</listOfEventAssignments>

</event>

</listOfEvents>

</model>

</sbml>

Section Contents Page 16 of 44

Section 3. Proposed syntax and semantics

SBase

id: SId {use="optional"}
name: string {use="optional"}

DistribBase

Figure 1: The definition of the DistribBase class. The id and name attributes defined are optional, and are identical to the
ones they inherit in SBML Level 3 Version 2 documents from SBase.

3.8 The DistribBase class

The DistribBase class is an abstract base class which is the parent class for every class in this Distributions package.

Its purpose is to replicate within the Distributions package an important change between SBML Level 3 Version 1

and SBML Level 3 Version 2: the addition of an optional id and name attribute to SBase. By adding these attributes

here, distrib may be used completely exchangeably between Level 3 Version 1 and Level 3 Version 2 documents

without any other modifications. The meaning of these attributes is identical, regardless of the Level/Version of the

document in which they appear.

The id attribute is of type SId, and must be unique among other ids in the SId namespace in the parent Model, and

has no mathematical meaning, unless stated otherwise in the definition of that object. The name attribute is of type

string, and is provided to allow the user to define a human-readable label for the object. It has no uniqueness

restrictions.

SBase (extended)

0...uncertainty

DistribBase

listOfUncertainties 0,1 ListOfUncertainties

0...[uncertParameter] UncertParameter

Uncertainty

Figure 2: The definition of the extended SBase class to include a new optional ListOfUncertainties child element. Intended
for use with any element with mathematical meaning, or with a Math child element. Also defines the ListOfUncertainties
and Uncertainty classes.

3.9 The extended SBase class

As can be seen in Figure 2, the SBML base class SBase is extended to include an optional ListOfUncertainties child

element, which in turn contains optional Uncertainty elements, each of which may contain a set of UncertParameter

objects that describe the uncertainty of the extended element. Multiple Uncertainty elements are allowed as children

of SBase to allow the modeler to record Uncertainty measurements from different sources (papers, experiments,

etc.) that may overlap and/or contradict one another.

In SBML Level 3 Core, one should only extend those SBase elements with mathematical meaning (Compartment,

Parameter, Reaction, Species, and SpeciesReference), or those SBase elements with Math children (Constraint,

Delay, EventAssignment, FunctionDefinition, InitialAssignment, KineticLaw, Priority, Rule, and Trigger). The Uncer-

Section Contents Page 17 of 44

Section 3. Proposed syntax and semantics

tainty child is added to SBase instead of to each SBML element so that other packages inherit the ability to extend

their own elements in the same fashion: for example, the Qualitative Models package has the QualitativeSpecies

class which has mathematical meaning, and a FunctionTerm class which has a Math child. Both could be given an

Uncertainty child containing information about the distribution or set of samples from which they were drawn.

A few SBML elements can interact in interesting ways that can confuse the semantics here. A Reaction element

and its KineticLaw child, for example, both reference the same mathematical formula, so only one should be

extended with an Uncertainty child element. Similarly, the uncertainty of an InitialAssignment will be identical to

the uncertainty of the element it assigns to, and therefore only one of those elements should be extended.

Other elements not listed above should probably not be given an Uncertainty child, as it would normally not

make sense to talk about the uncertainty of something that doesn’t have a corresponding mathematical meaning.

However, because packages or annotations can theoretically give new meaning (including mathematical meaning)

to elements that previously did not have them, this is not a requirement.

It is important to note that the uncertainty described is defined as being the uncertainty at the moment the element’s

mathematical meaning is calculated, and does not describe the uncertainty of how that element changes over time.

For a Species, Parameter, Compartment, and SpeciesReference, this means that it is the uncertainty of their initial

values, and does not describe the uncertainty in how those values evolve in time. The reason for this is that other

SBML constructs all describe how (or if) the values change in time, and it is those other constructs that should be

used to describe a symbol’s time-based uncertainty. For example, a Species whose initial value had uncertainty

due to instrument precision could have an Uncertainty child describing this. A Species whose value was known

to change over time due to unknown processes, but which had a known average and standard deviation could be

given an AssignmentRule that set that Species amount to the known average, and the AssignmentRule itself could

be given an Uncertainty child describing the standard deviation of the variability.

3.10 The Uncertainty class

The Uncertainty class is a collection of zero or more statistical measures related to the uncertainty of the parent

SBML element. It may only contain one of each type of measurement, which means that each of its UncertParameter

children must have a unique type attribute for every value but “externalParameter”. Each UncertParameter child

with a type of “externalParameter” must, in turn, have a unique definitionURL value. If a given SBML element

has multiple measures of the same type (for example, as measured from different sources or different experiments),

it should be given multiple Uncertainty children. Each Uncertainty child must be a unique set of statistical measures.

These statistical measures do not numerically affect simulation of the model. They are, in essence, a controlled

annotation format specifically designed for this sort of information. Tools may use this information as they wish,

just as they can with other annotation information.

Note that for elements that change in value over time, the described uncertainty applies only to the element’s initial

state, and not to how it changes in time. For typical simulations, this means the element’s initial assignment.

The child UncertParameter children are named according to their class, so any UncertSpan child will have the ele-

ment name uncertSpan, and any UncertParameter base class child will have the element name uncertParameter.

Propagation of error

It may be possible to propagate the error defined in Uncertainty elements through the mathematics defined in a

simulation of the model. Be advised that this will be a complicated system, and may involve calculating partial

derivates of equations that are not explicitly encoded. Many simulators choose instead to estimate the error through

stochastic simulations. Either approach should be possible with a properly encoded distrib model.

Section Contents Page 18 of 44

Section 3. Proposed syntax and semantics

3.10.1 Attributes inherited from SBase

An Uncertainty always inherits the optional metaid and sboTerm attributes, and inherits optional id and name

attributes as described in Section 3.8 on page 17. The id of an Uncertainty has no mathematical meaning.

SBase

type: UncertKind
value: double { use="optional" }
var: SIdRef { use="optional" }
units: UnitSIdRef {use="optional" }
definitionURL: ExternalRef { use="optional" }

UncertParameter

DistribBase

valueLower: double { use="optional" }
varLower: SIdRef { use="optional" }
valueUpper: double { use="optional" }
varUpper: SIdRef { use="optional" }

UncertSpan

listOfUncertParameters 0,1 ListOfUncertParameters

math
Math

xmlns: string {”http://www.w3.org/1998/Math/MathML"}

{MathML content describing distribution}

0,1

[uncertParameter] 0.. UncertParameter

Figure 3: The definition of the UncertParameter, UncertSpan, and ListOfUncertParameters classes. These classes
allow an Uncertainty to define an uncertainty numerically.

3.11 The UncertParameter class

Each UncertParameter defines one uncertainty statistic about the parent element. It has one required attribute type

of type UncertKindwhich defines what statistic it describes (i.e. “mean”, “standardDeviation”, “distribution”,

etc.). Its other attributes (value, var, units, and definitionURL), and children (math and listOfUncertParame-

ters) are all optional, each useable according to which type it is.

3.11.1 The type attribute

The type attribute defines what the UncertParameter describes. Depending on the type, other attributes will

be allowed or not, and the class must either be the base UncertParameter or the UncertSpan class, according to

Table 3 on the next page.

Section Contents Page 19 of 44

Section 3. Proposed syntax and semantics

Table 3: Values for the type attribute of a UncertParameter, the class that should be used with that type, and the attributes
and children that are allowed.

Value Class un
its

va
lu

e/
va

r

va
lu

eL
ow

er
/v

ar
Lo

w
er

va
lu

eU
pp

er
/v

ar
U

pp
er

de
fin

iti
on

U
R

L

m
at

h

lis
tO

fU
nc

er
tP

ar
am

et
er

s

coefficientOfVariation UncertParameter

kurtosis UncertParameter

mean UncertParameter

median UncertParameter

mode UncertParameter

sampleSize UncertParameter

skewness UncertParameter

standardDeviation UncertParameter

standardError UncertParameter

variance UncertParameter

confidenceInterval UncertSpan

credibleInterval UncertSpan

interquartileRange UncertSpan

range UncertSpan

distribution UncertParameter

externalParameter either

3.11.2 The value and var attributes

The optional value attribute (of type double) is used when the UncertParameter equals the given number, and the

optional var attribute (of type SIdRef) is used when the value of an UncertParameter equals the referenced element

with mathematical meaning. Either attribute may be used for those UncertParameter types with a single value, but

not both.

3.11.3 The units attribute

The optional units attribue of an UncertParameter is of type UnitSIdRef. The UnitSIdRef is defined in the SBML

Level 3 Core specification, but in brief, it may either be the SId of a UnitDefinition in the Model, or a predefined SI

unit from the Table 2 in the SBML Level 3 Core specification. The units of uncertainty statistics are generally either

dimensionless or the same as the units of the parent, according to the formula that defines the value. A mean and a

standardDeviation, for example, are always the same units as the parent, while a coefficientOfVariation is

dimensionless.

Section Contents Page 20 of 44

Section 3. Proposed syntax and semantics

3.11.4 The definitionURL attribute

The optional definitionURL attribute (of type ExternalRef) may be used when the type of the UncertParam-

eter is “distribution”, and must be used when the type of the UncertParameter is “externalParameter”. The

ExternalRef should point to an ontology URL, distribution csymbol, or other unique definition string that defines

what is meant by this UncertParameter. The definitionURLmust not be defined if the type is any other value: the

other types are already completely defined.

3.11.5 Attributes inherited from SBase

An UncertParameter always inherits the optional metaid and sboTerm attributes, and inherits optional id and name

attributes as described in Section 3.8 on page 17. The id of a UncertParameter does not take on the mathematical

value of its value attribute, and may not be used in mathematical contexts. Instead, if the value of the element is to

be used elsewhere, the var attribute should be used instead, and that referenced value used in other contexts.

3.11.6 The child math element

The optional math element contains MathML, and may only be used for an UncertParameter of type “distribution”

or “externalParameter”. When defined for a “distribution”, the MathML should define that distribution, such

as by using one of the extended csymbol definitions from this specification.

3.11.7 The child ListOfUncertParameters element

The optional child ListOfUncertParameters element may only be used for an UncertParameter of type “distri-

bution” or “externalParameter”. Unlike an Uncertainty, there are no uniqueness restrictions among the children

of this element: any number of UncertParameter elements of any typemay be used, according to whatever makes

sense for the statistic defined by the parent definitionURL.

3.12 The UncertSpan class

The UncertSpan class defines a span of values that define an uncertainty statistic such as confidence interval or

range. It inherits from UncertParameter, and adds four optional attributes, varLower and varUpper, of type SIdRef,

and valueLower and valueUpper, of type double. Exactly one of the attributes varLower and valueLowermay be

defined, and exactly one of the attributes varUpper and valueUppermay be defined. If no attributes are defined,

the parameters of the span are undefined. If only one attribute is defined (one of the upper or lower attributes), that

aspect of the span is defined, and the other end is undefined. The span is fully defined if two attributes (one lower

and one upper) are defined.

The value of the lower attribute (whichever is defined) must be lesser or equal to the value of the upper attribute

(whichever is defined), at the initial conditions of the model. The Uncertainty element cannot affect the core

mathematics of an SBML model, but if it is used in a mathematical context during simulation of the model, this

restriction on the attribute values must be maintained, or the UncertSpan object as a whole will be undefined.

Like the units attribute on an UncertParameter, the units attribute is provided if valueUpper and/or valueLower

is defined. The units on both the upper and lower ends of the span must match each other, if defined. The units for

span ends defined by reference may be obtained from the referenced SBML element.

3.13 The different UncertParameter and UncertSpan type values.

The UncertKind values each have a particular definition. The following kinds are all single-value types, and thus

may either be defined by value or var, and must only be used for UncertParameter elements, not UncertSpan

elements. Definitions taken from https://web.archive.org/web/20161029215725/uncertml.org/).

■ coefficientOfVariation: For a random variable with mean µ and strictly positive standard deviation σ,

the coefficient of variation is defined as the ratio σ
|µ| . One benefit of using the coefficient of variation rather

Section Contents Page 21 of 44

Section 3. Proposed syntax and semantics

than the standard deviation is that it is unitless.

■ kurtosis: The kurtosis of a distribution is a measure of how peaked the distribution is. The kurtosis is defined

as µ4/σ4 where µ4 is the fourth central moment of the distribution and σ is its standard deviation.

■ mean: The arithmetic mean (typically just the mean) is what is commonly called the average. It is defined

as x̄ = 1
n ·∑n

i=1 xi where xi represents with i th observation of the quantity x in the sample set of size n. It is

related to the expected value of a random variable, µ = E [X] in that the population mean, µ, which is the

average of all quantities in the population and is typically not known, is replaced by its estimator, the sample

mean x̄. Note that this statistic does not deal with issues of sample size, rather the mean is taken to refer to

the population mean.

■ median: The median is described as the numeric value separating the higher half of a sample (or population)

from the lower half. The median of a finite list of numbers can be found by arranging all the observations

from lowest value to highest value and picking the middle one. If there is an even number of observations,

then there is no single middle value, then the average of the two middle values is used. The median is also the

0.5 quantile, or 50th percentile.

■ mode: The mode is the value that occurs the most frequently in a data set (or a probability distribution). It

need not be unique (e.g., two or more quantities occur equally often) and is typically defined for continuous

valued quantities by first defining the histogram, and then giving the central value of the bin containing the

most counts.

■ sampleSize: The sample size is a direct count of the number of observations made or the number of samples

measured. It is used in several other statistical measurements, and can be used to convert one to another.

■ skewness: The skewness of a random variable is a measure of how asymmetric the corresponding probability

distribution is. The skewness is defined as µ3/σ3 where µ3 is the 3rd central moment of the distribution and σ

is its standard deviation.

■ standardDeviation: The standard deviation of a distribution or population is the square root of its vari-

ance and is given by σ =
√

E [(X −µ)2] where µ = E [X]. The population standard deviation is given by

σ =
√

1
n

∑n
i=1

(
xi − x̄

)2 where x̄ = 1
n ·∑n

i=1 xi , and xi represents the i th observation of the quantity x in the

population of size n. The standard deviation is a widely used measure of the variability or dispersion since it

is reported in the natural units of the quantity being considered. Note that if a finite sample of a population

has been used then the sample standard deviation is the appropriate unbiased estimator to use.

■ standardError: The standard error is the standard deviation of estimates of a population value. If that

population value is a mean, this statistic is called the standard error of the mean. It is calculated as the

standard deviation of a sample divided by the square root of the number of the sample size. As the sample

size increases, the sample size draws closer to the population size, and the standard error approaches zero.

σx̄ =σ/
p

n.

■ variance: The variance of a random quantity (or distribution) is the average value of the square of the

deviation of that variable from its mean, given by σ2 = Var[X] = E [(X −µ)2] where µ= E [X]. The complete

population variance is given by σ2 = 1
n

∑n
i=1

(
xi − x̄

)2 where x̄ = 1
n ·∑n

i=1 xi , and xi represents the i th observa-

tion of the quantity x in the population of size n. This is the estimator of the population variance and should

be replaced by the sample variance when using samples of finite size.

The following UncertKind values are all spans, and may only be used for UncertSpan elements. They are defined by

an upper and lower value. Definitions taken from taken from https://web.archive.org/web/20161029215725/

uncertml.org/).

■ confidenceInterval: For a univariate random variable x, a confidence interval is a range [a,b], a < b, so

that x lies between a and b with given probability. For example, a 95% confidence interval is a range in which

Section Contents Page 22 of 44

Section 3. Proposed syntax and semantics

x falls 95% of the time (or with probability 0.95). Confidence intervals provide intuitive summaries of the

statistics of the variable x.

If x has a continuous probability distribution P , then [a,b] is a 95% confidence interval if
∫ b

a P (x) = 0.95.

Unless specified otherwise, the confidence interval is usually chosen so that the remaining probability is split

equally, that is P (x < a) = P (x > b). If x has a symmetric distribution, then the confidence intervals are usually

centered around the mean. However, non-centered confidence intervals are possible and are better described

by their lower and upper quantiles or levels. For example, a 50% confidence interval would usually lie between

the 25% and 75% quantiles, but could in theory also lie between the 10% and 60% quantiles, although this

would be rare in practice. The confidenceInterval allows you the flexibility to specify non-symmetric

confidence intervals however in practice we would expect the main usage to be for symmetric intervals.

The confidenceInterval child of a Uncertainty is always the 95% confidence interval. For other confidence

intervals, use an UncertParameter of type “externalParameter” instead.

■ credibleInterval: In Bayesian statistics, a credible interval is similar to a confidence interval determined

from the posterior distribution of a random variable x. That is, given a prior distribution p(x) and some

observations D, the posterior probability p(x | D) can be computed using Bayes theorem. A 95% credible

interval is then any interval [a,b] so that
∫ b

a p(x | D) = 0.95, that is the variable x lies in the interval [a,b] with

posterior probability 0.95. Note that the interpretation of a credible interval is not the same as a (frequentist)

confidence interval.

The credibleInterval child of a Uncertainty is always the 95% credible interval. For other credibility

intervals, use an UncertParameter of type “externalParameter” instead.

■ interquartileRange: The interquartile range is the range between the 1st and 3rd quartiles. It contains the

middle 50% of the sample realisations (or of the sample probability). It is typically used and shown in box

plots.

■ range: The range is the interval [a,b] so that a < b and contains all possible values of x. This is also often

called the statistical range, which is the distance from the smallest value to the largest value in a sample

dataset. For a sample dataset X = (x1, ..., xN), the range is the distance from the smallest xi to the largest. It is

often used as a first estimate of the sample dispersion.

Finally, we have the “distribution” and “externalParameter” types:

■ distribution: If the uncertainty is defined by a known distribution, that distribution may either be defined

by using the child math element, or by using the definitionURL. When the math child is used, that math

should contain the distribution in question: typically this will be a distribution csymbol but may be something

more complicated, like a piecewise function. If the definitionURL is used, many more distributions may

be used than are defined in this specification (like an externalParameter, below). To fully define this

distributon, it will almost certainly be necessary to further define that distribution with child UncertParameter

elements. For example, a Beta distribution takes two parameters (α and β), each of which could be defined by

a child UncertParameter of type “externalParameter”, with appropriate definitionURL values. A type of

value “distribution” is only valid for UncertParameter elements, not UncertSpan elements.

■ externalParameter: This type is uniquely described by an appropriate definitionURL, and is provided to

allow a modeler to encode externally-provided parameters not otherwise explicitly handled by this specifi-

cation. The range of possibilities is vast, so modelers should ensure that the tool they wish to use encodes

support for any UncertParameter they define. As an external parameter may take any form, there are no

restrictions on what other attributes or children that may be used by an UncertParameter of this type: it may

be a single value; it may be a span; it may be defined by a child math element; it may be defined by child

UncertParameter elements; it may be defined by any combination of the above. The only restriction is that

the definitionURLmust be defined for any UncertParameter of type “externalParameter”. This type value

may be used for either UncertParameter or UncertSpan elements.

Section Contents Page 23 of 44

Section 3. Proposed syntax and semantics

As an example, here’s an UncertSpan that defines the 99% confidence interval of a Parameter (using made-up

definitionURL values):

<parameter id="p1" value="3.42" constant="true">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertSpan type="externalParameter" lowerValue="3.19" upperValue="3.83"

definitionURL="http://dist.org/CI">

<distrib:listOfUncertParameters>

<distrib:uncertParameter type="externalParameter" value="0.99"

definitionURL="http://dist.org/CIpercent">

</distrib:listOfUncertParameters>

</distrib:uncertSpan>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</parameter>

As examples, the following statistics are not defined by a single value nor by a range, and would therefore be good

candidates for encoding as an external parameter. These terms were included in the now-defunct UncertML (and

the definitions were again taken from https://web.archive.org/web/20161029215725/uncertml.org/), and

may also be findable in other ontologies such as STATO (which has a searchable database at https://www.ebi.ac.

uk/ols/ontologies/stato):

■ centralMoment: For a given positive natural number k, the kth central moment of a random variable x is

defined as µk = E [(x −E [x])k]. That is, it is the expected value of the deviation from the mean to the power k.

In particular, µ0 = 1, µ1 = 0 and µ2 is the variance of x.

■ correlation: The correlation between two random variables x1 and x2 is the extent to which these variable

vary together in a linear fashion. It is characterized by the coefficient ρ1,2 = E [(x1 −µ1)(x2 −µ2)]/σ1σ2 where

µ1 and µ2 are the means of x1 and x2 respectively, and σ1 and σ2 are their respective standard deviations.

Note this is strictly not a description of uncertainty, but it can be useful to represent the correlation between

two variables. Generally a covariance specification would be preferred since this describes the uncertainty.

■ decile: A decile, d , is any of the nine values that divide the sorted quantities into ten equal parts, so that

each part represents 1/10 of the sample, population or distribution. The first decile is equivalent to the 10th

percentile.

■ moment: For a given positive natural number k, the kth moment of a random variable x is defined asµk = E [xk].

In particular, µ0 = 1 and µ1 is the mean of x. The moments can be defined with respect to some point a, that

is µk (a) = E [(x −a)k]. Moments defined about the mean are called central moments.

■ percentile: A percentile is the value of a quantity below which a certain percent of values fall. This can be

defined for samples, populations and distributions. For finite samples there is no widely accepted method, but

all methods essentially rank the quantities and then use some interpolation to compute the percentile, unless

the sample size n is a multiple of 100. For probability distributions the inverse cumulative density function

can be used. The most widely used method is as follows: to estimate the value, xp , of the pth percentile of

an ascending ordered dataset containing n elements with values x1, x2, ..., xn first compute ρ = p
100 (n −1)+1.

Now ρ is split into its integer component, k, and decimal component, d , such that ρ = k +d . xp is then

calculated as xp = xk +d(xk+1 −xk) where 1 < ρ < n with special cases xp = x1 [ρ = 1]; xn [ρ = n].

■ probability: Given a random variable x with probability density function f (x), the probability that x lies in

some part of its domain X is defined as P (x ∈X) = ∫
x∈X f (x). X can be defined as a lower- or upper-bounded

range, e.g., P (x < 3.2), or as the intersection of several such ranges, e.g., P (x ≥ 1.7∩x < 3.2).

■ quantile: Given a random variable x, the n-quantiles are the values of x which split the domain into n

regions of equal probability. For instance, the kth n-quantile is the value qk for which P (x < qk) = k
n . For some

common values of n, the n-quantiles have additional names, namely quartiles for n = 4, deciles for n = 10

Section Contents Page 24 of 44

Section 3. Proposed syntax and semantics

and percentiles for n = 100. More generally, a quantile can be associated to any probability p, so that q is the

value of x below which a proportion p of the probability lies, i.e., P (x < q) = p. The plot on the right shows the

1st to 9th 10-quantiles (or deciles) for a normal distribution (µ= 4, σ= 1) as orange dots. The blue curve is the

cumulative density function of x. Note how the quantiles split the probability (y-axis) into 10 equal regions.

■ quartile: The quartiles are the 4-quantiles, that is the 4 values of x below which lies a proportion 0.25, 0.50,

0.75 and 1 of the probability. One can also think of them as the 4 values of x which split the domain into 4

regions of equal probability.

3.14 The uncertainty of a Species

A Species is a unique SBML construct in that its value is either an amount or a concentration, depending on

the value of its hasOnlySubstanceUnits attribute (“true” for amount, or “false” for concentration). The value

of its uncertainty tracks with this: if the value of hasOnlySubstanceUnits on the parent Species is “true”, the

uncertainty is in terms of amounts, and if “false”, the uncertainty is in terms of concentration.

If a Species is being modeled in SBML in amounts, but was measured in terms of its concentration, or visa versa, an

InitialAssignment should be created that explicitly handles this conversion and assigns the appropriate value to the

Species, as in the example below.

<listOfCompartments>

<compartment id="C" spatialDimensions="3" size="2" constant="true">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertParameter type="standardDeviation" value="0.15"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</compartment>

</listOfCompartments>

<listOfSpecies>

<species id="S_amt" compartment="C" hasOnlySubstanceUnits="true"

boundaryCondition="false" constant="false"/>

</listOfSpecies>

<listOfParameters>

<parameter id="S_conc" value="3.4" constant="true">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertParameter type="standardDeviation" value="0.3"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</parameter>

</listOfParameters>

<listOfInitialAssignments>

<initialAssignment symbol="S_amt">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> S_conc </ci>

<ci> C </ci>

</apply>

</math>

</initialAssignment>

</listOfInitialAssignments>

Here, the uncertainty of the species “S_amt” is not set explicitly, and instead can be derived from the uncertainty of

the values in its initial assignment (“S_conc” and “C”).

Section Contents Page 25 of 44

Section 3. Proposed syntax and semantics

3.15 Examples using Uncertainty

Several examples are given to illustrate the use of the Uncertainty class:

3.15.1 Basic Uncertainty example

In this examples, a species is given an Uncertainty child to describe its standard deviation:

<species id="s1" compartment="C" initialAmount="3.22" hasOnlySubstanceUnits="true"

boundaryCondition="false" constant="false">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertParameter type="standardDeviation" distrib:value="0.3"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</species>

Here, the species with an initial amount of 3.22 is described as having a standard deviation of 0.3, a value that might

be written as “3.22 ± 0.3”. This is probably the simplest way to use the package to introduce facts about the

uncertainty of the measurements of the values present in the model.

It is also possible to include additional information about the species, should more be known:

<species id="s1" compartment="C" initialAmount="3.22" hasOnlySubstanceUnits="true"

boundaryCondition="false" constant="false">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:listOfUncertParameters>

<distrib:uncertParameter type="mean" distrib:value="3.2"/>

<distrib:uncertParameter type="standardDeviation" distrib:value="0.3"/>

<distrib:uncertParameter type="variance" distrib:value="0.09"/>

</distrib:listOfUncertParameters>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</species>

In this example, the initial amount of 3.22 is noted as having a mean of 3.2, a standard deviation of 0.3, and a variance

of 0.09. Note that the standard deviation can be calculated from the variance (or visa versa), but the modeler has

chosen to include both here for convenience. Note too that this use of the Uncertainty element does not imply that

the species amount comes from a normal distribution with a mean of 3.2 and standard deviation of 0.3, but rather

that the species amount comes from an unknown distribution with those qualities. If it is known that the value

was drawn from a particular distribution, an UncertParameter of type “distribution” should be used, rather than

UncertParameter elements of type “mean” and “standardDeviation”.

Note also that 3.22 (the initialAmount) is different from 3.2 (the mean): evidently, this model was constructed as a

realization of the underlying uncertainty, instead of simply using the mean.

3.15.2 Defining a random variable

In addition to describing the uncertainty about an experimental observation one can also use this mechanism

to describe a parameter as a random variable. In the example below the parameter, Z, is defined as following a

gamma distribution, with a given shape and scale. No value is given for the parameter so it is then up the modeler to

decide how to use this random variable. For example they may choose to simulate the model in which case they

may provide values for shape_Z and scale_Z and then sample a random value from the simulation. Alternatively

they may choose to carry out a parameter estimation and use experimental observations to estimate shape_Z and

scale_Z.

For added information, the modeler has chosen to include the observed mean and variance of the value. These are

Section Contents Page 26 of 44

Section 3. Proposed syntax and semantics

close to the expected mean and variance from the given distribution (1.0 and 0.1, respectively, given the shape and

scale), but were slightly different due to the sample size.

<listOfParameters>

<parameter id="shape_Z" value="10" constant="true"/>

<parameter id="scale_Z" value="0.1" constant="true"/>

<parameter id="Z" constant="true">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertParameter type="distribution">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/gamma"

encoding="text"> gamma </csymbol>

<ci> shape_Z </ci>

<ci> scale_Z </ci>

</apply>

</math>

</distrib:uncertParameter>

<distrib:uncertParameter type="mean" value="1.03"/>

<distrib:uncertParameter type="variance" value="0.97"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</parameter>

</listOfParameters>

3.15.3 Defining external distributions

If an SBML value is drawn from a distribution not defined explicitly in this specification, it is necessary to use

an UncertParameter of type “externalParameter” to define the distribution’s parameters. In this example, the

parameter p1 was drawn from a zeta distribution, with a shape parameter of 2.37. An UncertParameter of type

“distribution” is created with the ’zeta’ URI, with a child UncertParameter of type “externalParameter” with the

’shape’ URI for its definitionURL. For readability, ’zeta’ and ’shape’ were used as the names of these parameters.

<parameter id="p1" constant="true">

<listOfUncertainties xmlns="http://www.sbml.org/sbml/level3/version1/distrib/version1">

<uncertainty>

<uncertParameter type="distribution" name="zeta"

definitionURL="http://www.probonto.org/ontology#PROB_k0001263">

<listOfUncertParameters>

<uncertParameter type="externalParameter" name="shape" value="2.37"

definitionURL="http://purl.obolibrary.org/obo/STATO_0000436"/>

</listOfUncertParameters>

</uncertParameter>

</uncertainty>

</listOfUncertainties>

</parameter>

It is also possible to create even more complex structures with the UncertParameter scheme. In this example, we

define a categorical distribution based on data from three patients. The parent UncertParameter is defined to be the

’categorical’ distribution, with three ’category’ children, each with two child ’value’ and ’probability’ parameters.

Collectively, they define a distribution where a value of 1.01 has a probability of 50%, a value of 2.24 has a probability

of 25%, and a value of 1.72 has a probability of 25%. (The definitionURL examples here were made up for the

purposes of this example, to be readable. In an actual SBML document, they would point to existing external

ontologies.)

Section Contents Page 27 of 44

Section 3. Proposed syntax and semantics

<listOfUncertainties xmlns="http://www.sbml.org/sbml/level3/version1/distrib/version1">

<uncertainty>

<listOfUncertParameters>

<uncertParameter type="distribution" definitionURL="http://dist.org/categorical">

<listOfUncertParameters>

<uncertParameter type="externalParameter" id="p1" definitionURL="http://dist.org/category">

<listOfUncertParameters>

<uncertParameter type="externalParameter" value="1.01"

definitionURL="http://dist.org/cat_val"/>

<uncertParameter type="externalParameter" value="0.5"

definitionURL="http://dist.org/cat_prob"/>

</listOfUncertParameters>

</uncertParameter>

<uncertParameter type="externalParameter" id="p2" definitionURL="http://dist.org/category">

<listOfUncertParameters>

<uncertParameter type="externalParameter" value="2.24"

definitionURL="http://dist.org/cat_val"/>

<uncertParameter type="externalParameter" value="0.25"

definitionURL="http://dist.org/cat_prob"/>

</listOfUncertParameters>

</uncertParameter>

<uncertParameter type="externalParameter" id="p3" definitionURL="http://dist.org/category">

<listOfUncertParameters>

<uncertParameter type="externalParameter" value="1.72"

definitionURL="http://dist.org/cat_val"/>

<uncertParameter type="externalParameter" value="0.25"

definitionURL="http://dist.org/cat_prob"/>

</listOfUncertParameters>

</uncertParameter>

</listOfUncertParameters>

</uncertParameter>

</listOfUncertParameters>

</uncertainty>

</listOfUncertainties>

Section Contents Page 28 of 44

4 Interaction with other packages

4.1 Custom annotations for function definitions

Before this package was available, a collection of SBML simulator authors developed an ad hoc convention for

exchanging annotated FunctionDefinition objects that represented draws from distributions. This convention

is described at http://co.mbine.org/specifications/sbml.proposal.distrib-annotations.version-1 by

Frank T. Bergmann, and represents a basic starting point for any modeler interested in exchanging SBML models

containing draws from distributions.

When implementing Distributions support, it would be possible to include “backwards” support for this annotation

convention by wrapping any calls to a distribution in a FunctionDefinition, and annotating that using this scheme.

Table 4 is taken from the above document by Frank Bergmann, and can be used as a template if translating from

that FunctionDefinition system to the Distributions extended Math system. The suggested fallback function returns

the mean of the distribution.

Table 4: The annotation URLs.
Id Distribution Definition URL Fallback

uniform Uniform http://en.wikipedia.org/wiki/Uniform_distribution_(continuous) lambda(a, b, a+b
2)

normal Normal http://en.wikipedia.org/wiki/Normal_distribution lambda(m, s, m)

exponential Exponential http://en.wikipedia.org/wiki/Exponential_distribution lambda(l, 1/l)

gamma Gamma http://en.wikipedia.org/wiki/Gamma_distribution lambda(a, b, a ×b)

poisson Poisson http://en.wikipedia.org/wiki/Poisson_distribution lambda(µ, µ)

lognormal Lognormal http://en.wikipedia.org/wiki/Log-normal_distribution lambda(z, s, ez+s2/2)

chisq Chi-squared http://en.wikipedia.org/wiki/Chi-squared_distribution lambda(ν, ν)

laplace Laplace http://en.wikipedia.org/wiki/Laplace_distribution lambda(a, 0)

cauchy Cauchy http://en.wikipedia.org/wiki/Cauchy_distribution lambda(a, a)

rayleigh Rayleigh http://en.wikipedia.org/wiki/Rayleigh_distribution lambda(s, s ×
p
π/2)

binomial Binomial http://en.wikipedia.org/wiki/Binomial_distribution lambda(p, n, p ×n)

bernoulli Bernoulli http://en.wikipedia.org/wiki/Bernoulli_distribution lambda(p, p)

As an example, here is a complete (if small) model that uses the above “custom annotation” scheme:

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core"

level="3" version="1">

<model>

<listOfFunctionDefinitions>

<functionDefinition id="normal">

<annotation>

<distribution xmlns="http://sbml.org/annotations/distribution"

definition="http://en.wikipedia.org/wiki/Normal_distribution"/>

</annotation>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<lambda>

<bvar>

<ci> mean </ci>

</bvar>

<bvar>

Section Contents Page 29 of 44

Section 4. Interaction with other packages

<ci> stdev </ci>

</bvar>

<notanumber/>

</lambda>

</math>

</functionDefinition>

</listOfFunctionDefinitions>

<listOfParameters>

<parameter id="x" constant="true"/>

</listOfParameters>

<listOfInitialAssignments>

<initialAssignment symbol="x">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<ci> normal </ci>

<cn> 3 </cn>

<cn> 0.2 </cn>

</apply>

</math>

</initialAssignment>

</listOfInitialAssignments>

</model>

</sbml>

And here is the same model, using the csymbol defined in distrib:

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version2/core"

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1"

level="3" version="2" distrib:required="true">

<model>

<listOfParameters>

<parameter id="x" constant="true"/>

</listOfParameters>

<listOfInitialAssignments>

<initialAssignment symbol="x">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/normal"

encoding="text"> normal </csymbol>

<cn type="integer"> 3 </cn>

<cn> 0.2 </cn>

</apply>

</math>

</initialAssignment>

</listOfInitialAssignments>

</model>

</sbml>

4.2 The Arrays package

This package is dependent on no other package, but might rely on the Arrays package to provide vector and matrix

structures if those are desired/used. Note that currently, the only case where arrays could be used is when an

UncertParameter of type “externalParameter” is defined that requires array input or output.

4.3 SBML Level 3 Version 2

This package may be used with either SBML Level 3 Version 1 Core, or SBML Level 3 Version 2 Core, and no construct

in this package changes as a result: the addition of id and name to DistribBase means that the addition of those

attributes to SBase in SBML Level 3 Version 2 Core is redundant.

Another change between SBML Level 3 Version 1 and Version 2 is that in Version 2, core elements and core Math

Section Contents Page 30 of 44

Section 4. Interaction with other packages

may refer to package idswith mathematical meaning. However, Distributions UncertParameter elements do not

have mathematical meaning, and may not be used in this fashion. Instead, the var attribute should be used to

connect the element to a core Parameter, instead of using the value attribute. This approach has the advantage of

working both in Version 1 and Version 2 of SBML Core.

4.4 Other SBML Level 3 Packages

This package may be used seamlessly with other SBML Level 3 packages that have Math elements, and/or that have

elements with mathematical meaning. It would be possible, for example, to use a distrib csymbol in the Math of a

’Qualitative Models’ <functionTerm>. In this example, the functionTerm returns true when a quantity ’A’ is greater

than or equal to a value drawn from a uniform distribution:

<qual:transition qual:id="tr_B">

[...]

<qual:listOfFunctionTerms>

<qual:functionTerm qual:resultLevel="1">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<!-- A >= uniform(0,2)-->

<apply>

<geq/>

<ci>A</ci>

<apply>

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/uniform"

encoding="text"> uniform </csymbol>

<cn type="integer"> 0 </cn>

<cn type="integer"> 2 </cn>

</apply>

</apply>

</math>

</qual:functionTerm>

<qual:defaultTerm qual:resultLevel="0"/>

</qual:listOfFunctionTerms>

</qual:transition>

A Qualitative Species could also be given a child Uncertainty. Here, the value of A is described as coming from a

poisson distribution:

<qual:qualitativeSpecies qual:compartment="cytosol" qual:constant="false"

qual:id="A" qual:maxLevel="6">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertParameter distrib:type="distribution">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/poisson"

encoding="text"> poisson </csymbol>

<cn type="integer"> 0 </cn>

</apply>

</math>

</distrib:uncertParameter>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</qual:qualitativeSpecies>

These constructs can be used in identical ways in other SBML Level 3 packages.

Section Contents Page 31 of 44

5 Use-cases and examples

The following examples are more fleshed out than the ones in the main text, and/or illustrate features of this package

that were not previously illustrated.

5.1 Sampling from a distribution: PK/PD Model

This is a very straightforward use of a log normal distribution. The key point to note is that a value is sampled from

the distribution and assigned to a variable when it is invoked in the initialAssignment elements in this example.

Later use of the variable does not result in re-sampling from the distribution. This is consistent with current SBML

semantics.

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core"

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1"

level="3" version="1" distrib:required="true">

<model>

<listOfCompartments>

<compartment id="central" size="0" constant="true"/>

<compartment id="gut" size="0" constant="true"/>

</listOfCompartments>

<listOfSpecies>

<species id="Qc" compartment="central" initialAmount="1" hasOnlySubstanceUnits="true"

boundaryCondition="false" constant="false"/>

<species id="Qg" compartment="gut" initialAmount="1" hasOnlySubstanceUnits="true"

boundaryCondition="false" constant="false"/>

</listOfSpecies>

<listOfParameters>

<parameter id="ka" constant="true"/>

<parameter id="ke" constant="true"/>

<parameter id="Cc" constant="false"/>

<parameter id="Cc_obs" constant="false"/>

</listOfParameters>

<listOfInitialAssignments>

<initialAssignment symbol="central">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/distrib/lognormal"> lognormal

</csymbol>

<cn> 0.5 </cn>

<cn> 0.1 </cn>

</apply>

</math>

</initialAssignment>

<initialAssignment symbol="ka">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/distrib/lognormal"> lognormal

</csymbol>

<cn> 0.5 </cn>

<cn> 0.1 </cn>

</apply>

</math>

</initialAssignment>

<initialAssignment symbol="ke">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/distrib/lognormal"> lognormal

</csymbol>

Section Contents Page 32 of 44

Section 5. Use-cases and examples

<cn> 0.5 </cn>

<cn> 0.1 </cn>

</apply>

</math>

</initialAssignment>

</listOfInitialAssignments>

<listOfRules>

<assignmentRule variable="Cc">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<divide/>

<ci> Qc </ci>

<ci> central </ci>

</apply>

</math>

</assignmentRule>

<assignmentRule variable="Cc_obs">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<plus/>

<ci> Cc </ci>

<cn type="integer"> 1 </cn>

</apply>

</math>

</assignmentRule>

</listOfRules>

<listOfReactions>

<reaction id="absorption" reversible="false" fast="false">

<listOfReactants>

<speciesReference species="Qg" stoichiometry="1" constant="true"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="Qc" stoichiometry="1" constant="true"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> ka </ci>

<ci> Qg </ci>

</apply>

</math>

</kineticLaw>

</reaction>

<reaction id="excretion" reversible="false" fast="false">

<listOfReactants>

<speciesReference species="Qc" stoichiometry="1" constant="true"/>

</listOfReactants>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<divide/>

<apply>

<times/>

<ci> ke </ci>

<ci> Qc </ci>

</apply>

<ci> central </ci>

</apply>

</math>

</kineticLaw>

</reaction>

</listOfReactions>

</model>

</sbml>

Section Contents Page 33 of 44

Section 5. Use-cases and examples

5.2 Multiple uses of distributions

In this example, a normal csymbol is used in an initial assignment, and mean and standardDeviation elements

are used to denote the uncertainty in the parameter V, and the uncertainty in the initial assignment to V. Note that

strictly speaking, one could assume that the uncertainty in the parameter itself was identical to the uncertainty in

its initial assignment; both are given here by way of illustration.

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core"

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1"

level="3" version="1" distrib:required="true">

<model>

<listOfParameters>

<parameter id="V" constant="true">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertParameter distrib:var="V_pop" distrib:type="mean"/>

<distrib:uncertParameter distrib:var="V_omega" distrib:type="standardDeviation"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</parameter>

<parameter id="V_pop" value="100" constant="true"/>

<parameter id="V_omega" value="0.25" constant="true"/>

</listOfParameters>

<listOfInitialAssignments>

<initialAssignment symbol="V">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/distrib/normal"> normal

</csymbol>

<ci> V_pop </ci>

<ci> V_omega </ci>

</apply>

</math>

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertParameter distrib:var="V_pop" distrib:type="mean"/>

<distrib:uncertParameter distrib:var="V_omega" distrib:type="standardDeviation"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</initialAssignment>

</listOfInitialAssignments>

</model>

</sbml>

5.3 Defining confidence intervals

In this example, several Parameter elements are given confidence intervals, and several Species are given standard

deviations. Each indicates the modeler’s assessment of the precision of the estimated given values for those

elements.

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1"

distrib:required="true">

<model>

<listOfCompartments>

<compartment id="C" spatialDimensions="3" size="1" constant="true"/>

</listOfCompartments>

<listOfSpecies>

<species id="S1" compartment="C" initialAmount="5.2" hasOnlySubstanceUnits="false"

Section Contents Page 34 of 44

Section 5. Use-cases and examples

boundaryCondition="false" constant="false">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertParameter distrib:value="0.3" distrib:type="standardDeviation"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</species>

<species id="S2" compartment="C" initialAmount="8.7" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertParameter distrib:value="0.01" distrib:type="standardDeviation"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</species>

<species id="S3" compartment="C" initialAmount="1102" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertParameter distrib:value="53" distrib:type="standardDeviation"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</species>

<species id="S4" compartment="C" initialAmount="0.026" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertParameter distrib:value="0.004" distrib:type="standardDeviation"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</species>

</listOfSpecies>

<listOfParameters>

<parameter id="P1" value="5.13" constant="true">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertSpan distrib:type="confidenceInterval"

distrib:valueLower="5" distrib:valueUpper="5.32"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</parameter>

<parameter id="P2" value="15" constant="true">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertSpan distrib:type="confidenceInterval"

distrib:valueLower="10.22" distrib:valueUpper="15.02"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</parameter>

<parameter id="P3" value="0.003" constant="true">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertSpan distrib:type="confidenceInterval"

distrib:valueLower="-0.001" distrib:valueUpper="0.0041"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</parameter>

<parameter id="P4" value="0.34" constant="true">

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertSpan distrib:type="confidenceInterval"

distrib:valueLower="0.22" distrib:valueUpper="0.51"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</parameter>

<parameter id="P5" value="92" constant="true">

Section Contents Page 35 of 44

Section 5. Use-cases and examples

<distrib:listOfUncertainties>

<distrib:uncertainty>

<distrib:uncertSpan distrib:type="confidenceInterval"

distrib:valueLower="90" distrib:valueUpper="99"/>

</distrib:uncertainty>

</distrib:listOfUncertainties>

</parameter>

</listOfParameters>

</model>

</sbml>

Section Contents Page 36 of 44

A Validation of SBML documents

A.1 Validation and consistency rules

This section summarizes all the conditions that must (or in some cases, at least should) be true of an SBML Level 3

Version 1 model that uses the Distributions package. We use the same conventions as are used in the SBML Level 3

Version 1 Core specification document. In particular, there are different degrees of rule strictness. Formally, the

differences are expressed in the statement of a rule: either a rule states that a condition must be true, or a rule

states that it should be true. Rules of the former kind are strict SBML validation rules—a model encoded in SBML

must conform to all of them in order to be considered valid. Rules of the latter kind are consistency rules. To help

highlight these differences, we use the following three symbols next to the rule numbers:

2X A checked box indicates a requirement for SBML conformance. If a model does not follow this rule, it does not

conform to the Distributions package specification. (Mnemonic intention behind the choice of symbol: “This

must be checked.”)

s A triangle indicates a recommendation for model consistency. If a model does not follow this rule, it is not

considered strictly invalid as far as the Distributions package specification is concerned; however, it indicates

that the model contains a physical or conceptual inconsistency. (Mnemonic intention behind the choice of

symbol: “This is a cause for warning.”)

F A star indicates a strong recommendation for good modeling practice. This rule is not strictly a matter of

SBML encoding, but the recommendation comes from logical reasoning. As in the previous case, if a model

does not follow this rule, it is not strictly considered an invalid SBML encoding. (Mnemonic intention behind

the choice of symbol: “You’re a star if you heed this.”)

The validation rules listed in the following subsections are all stated or implied in the rest of this specification

document. They are enumerated here for convenience. Unless explicitly stated, all validation rules concern objects

and attributes specifically defined in the Distributions package package.

For convenience and brevity, we use the shorthand “distrib:x” to stand for an attribute or element name x in+

the namespace for the Distributions package package, using the namespace prefix distrib. In reality, the prefix

string may be different from the literal “distrib” used here (and indeed, it can be any valid XML namespace prefix

that the modeler or software chooses). We use “distrib:x” because it is shorter than to write a full explanation

everywhere we refer to an attribute or element in the Distributions package namespace.

Attributes from this package are listed in these rules as having the “distrib:” prefix, but as is convention for SBML

packages, this prefix is optional.

General rules about this package

distrib-10101 2X To conform to the Distributions package specification for SBML Level 3 Version 1, an SBML doc-

ument must declare “http://www.sbml.org/sbml/level3/version1/distrib/version1”

as the XMLNamespace to use for elements of this package. (Reference: SBML Level 3 Specifi-

cation for Distributions, Version 1 Section 3.2 on page 10.)

distrib-10102 2X Wherever they appear in an SBML document, elements and attributes from the Distributions

package must use “http://www.sbml.org/sbml/level3/version1/distrib/version1” as

the namespace, declaring so either explicitly or implicitly. (Reference: SBML Level 3 Specifica-

tion for Distributions, Version 1 Section 3.2 on page 10.)

General rules for MathML content

distrib-10205 2X (Extends validation rule #10205 in the SBML Level 3 Core specification.) The allowed values

for the attribute definitionURL on a csymbol are extended to additionally allow

Section Contents Page 37 of 44

Section A. Validation of SBML documents

“http://www.sbml.org/sbml/symbols/distrib/normal”,

“http://www.sbml.org/sbml/symbols/distrib/uniform”,

“http://www.sbml.org/sbml/symbols/distrib/bernoulli”,

“http://www.sbml.org/sbml/symbols/distrib/binomial”,

“http://www.sbml.org/sbml/symbols/distrib/cauchy”,

“http://www.sbml.org/sbml/symbols/distrib/chisquare”,

“http://www.sbml.org/sbml/symbols/distrib/exponential”,

“http://www.sbml.org/sbml/symbols/distrib/gamma”,

“http://www.sbml.org/sbml/symbols/distrib/laplace”,

“http://www.sbml.org/sbml/symbols/distrib/lognormal”,

“http://www.sbml.org/sbml/symbols/distrib/poisson”, and

“http://www.sbml.org/sbml/symbols/distrib/rayleigh”. (Reference: SBML Level 3 Spec-

ification for Distributions, Version 1, Section 3.5 on page 12)

distrib-10250 2X Any MathML csymbol element with a definitionURL of

“http://www.sbml.org/sbml/symbols/distrib/normal”,

“http://www.sbml.org/sbml/symbols/distrib/binomial”,

“http://www.sbml.org/sbml/symbols/distrib/gamma”, or

“http://www.sbml.org/sbml/symbols/distrib/lognormal” must have exactly two or four

children. (Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.5 on

page 12)

distrib-10251 2X Any MathML csymbol element with a definitionURL of

“http://www.sbml.org/sbml/symbols/distrib/uniform” must have exactly two children.

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.5 on page 12)

distrib-10252 2X Any MathML csymbol element with a definitionURL of

“http://www.sbml.org/sbml/symbols/distrib/bernoulli”, must have exactly one child.

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.5 on page 12)

distrib-10253 2X Any MathML csymbol element with a definitionURL of

“http://www.sbml.org/sbml/symbols/distrib/cauchy”

or “http://www.sbml.org/sbml/symbols/distrib/laplace” must have exactly one, two,

or four children. (Reference: SBML Level 3 Specification for Distributions, Version 1, Sec-

tion 3.5 on page 12)

distrib-10254 2X Any MathML csymbol element with a definitionURL of

“http://www.sbml.org/sbml/symbols/distrib/chisquare”,

“http://www.sbml.org/sbml/symbols/distrib/exponential”,

“http://www.sbml.org/sbml/symbols/distrib/poisson”, or

“http://www.sbml.org/sbml/symbols/distrib/rayleigh” must have exactly one or three

children. (Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.5 on

page 12)

General rules about identifiers

distrib-10301 2X (Extends validation rule #10301 in the SBML Level 3 Core specification.) The distrib:id at-

tribute of every ListOfUncertainties, Uncertainty, UncertParameter, and UncertSpan is added

to the general SId namespace of the Model, and must be unique among all core or other

package id values also added to the same namespace. (Reference: SBML Level 3 Version 1

Core, Section 3.1.7.)

distrib-10302 2X The value of a distrib:idmust conform to the syntax of the SBML data type SId (Reference:

SBML Level 3 Specification for Distributions, Version 1, Section 3.8 on page 17.)

Section Contents Page 38 of 44

Section A. Validation of SBML documents

distrib-10303 2X The value of a distrib:namemust have a value of data type string. (Reference: SBML Level 3

Specification for Distributions, Version 1, Section 3.8 on page 17.)

Rules for the extended SBML class

distrib-20101 2X In all SBML documents using the Distributions package, the SBML object must have the

distrib:required attribute. (Reference: SBML Level 3 Version 1 Core, Section 4.1.2.)

distrib-20102 2X The value of attribute distrib:required on the SBML object must be of data type boolean.

(Reference: SBML Level 3 Version 1 Core, Section 4.1.2.)

distrib-20103 2X The value of attribute distrib:required on the SBML object must be set to “true”. (Refer-

ence: SBML Level 3 Specification for Distributions, Version 1 Section 3.2 on page 10.)

Rules for extended SBase object

distrib-20201 2X An SBase object may contain one and only one instance of the ListOfUncertainties element.

No other elements from the SBML Level 3 Distributions namespaces are permitted on an

SBase object. (Reference: SBML Level 3 Specification for Distributions, Version 1, Sec-

tion 3.9 on page 17.)

distrib-20202 2X Apart from the general notes and annotations subobjects permitted on all SBML objects, a

ListOfUncertainties container object may only contain Uncertainty objects. (Reference: SBML

Level 3 Specification for Distributions, Version 1, Section 3.9 on page 17.)

distrib-20203 2X A ListOfUncertainties object may have the optional SBML Level 3 Core attributes metaid and

sboTerm. No other attributes from the SBML Level 3 Core namespaces are permitted on a

ListOfUncertainties object. (Reference: SBML Level 3 Specification for Distributions, Version 1,

Section 3.9 on page 17.)

Rules for UncertParameter object

distrib-20301 2X An UncertParameter object may have the optional SBML Level 3 Core attributes metaid and

sboTerm. No other attributes from the SBML Level 3 Core namespaces are permitted on an

UncertParameter. (Reference: SBML Level 3 Version 1 Core, Section 3.2.)

distrib-20302 2X An UncertParameter object may have the optional SBML Level 3 Core subobjects for notes and

annotations. No other elements from the SBML Level 3 Core namespaces are permitted on an

UncertParameter. (Reference: SBML Level 3 Version 1 Core, Section 3.2.)

distrib-20303 2X An UncertParameter object must have the required attribute distrib:type, and may have the

optional attributes distrib:id, distrib:name, distrib:value, distrib:var, distrib:-

units and distrib:definitionURL. No other attributes from the SBML Level 3 Distributions

namespaces are permitted on an UncertParameter object. (Reference: SBML Level 3 Specifica-

tion for Distributions, Version 1, Section 3.11 on page 19.)

distrib-20304 2X An UncertParameter object may contain one and only one instance of each of the ListOfUncert-

Parameters and ASTNode elements. No other elements from the SBML Level 3 Distributions

namespaces are permitted on an UncertParameter object. (Reference: SBML Level 3 Specifica-

tion for Distributions, Version 1, Section 3.11 on page 19.)

distrib-20305 2X The value of the attribute distrib:type of an UncertParameter object may only be a subset

of the values allowed in an SBML data type UncertType; that is, the value must be one of the

following: “distribution”, “externalParameter”, “coeffientOfVariation”, “kurtosis”,

“mean”, “median”, “mode”, “sampleSize”, “skewness”, “standardDeviation”, “standardEr-

ror”, or “variance”. (Reference: SBML Level 3 Specification for Distributions, Version 1,

Section 3.11 on page 19.)

Section Contents Page 39 of 44

Appendix A. Validation of SBML documents

distrib-20306 2X The attribute distrib:value on an UncertParameter must have a value of data type double.

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on page 19.)

distrib-20307 2X The value of the attribute distrib:var of an UncertParameter object must be the identifier

of an existing object derived from the SBase class and defined in the enclosing Model object.

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on page 19.)

distrib-20308 2X The value of the attribute distrib:units on an UncertParameter must be taken from the fol-

lowing: the identifier of a UnitDefinition object in the enclosing Model, or one of the base units

in SBML. (Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on

page 19.)

distrib-20309 2X The attribute distrib:definitionURL on an UncertParameter must have a value of data type

string. (Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on

page 19.)

distrib-20310 2X Apart from the general notes and annotations subobjects permitted on all SBML objects, a

ListOfUncertParameters container object may only contain UncertParameter objects. (Refer-

ence: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on page 19.)

distrib-20311 2X A ListOfUncertParameters object may have the optional SBML Level 3 Core attributes metaid

and sboTerm. No other attributes from the SBML Level 3 Core namespaces are permitted on

a ListOfUncertParameters object. (Reference: SBML Level 3 Specification for Distributions,

Version 1, Section 3.11 on page 19.)

distrib-20312 2X A ListOfUncertParameters object may have the optional attributes distrib:id and distrib:-

name. No other attributes from the SBML Level 3 Distributions namespaces are permitted on

an UncertSpan object. (Reference: SBML Level 3 Specification for Distributions, Version 1,

Section 3.11 on page 19.)

distrib-20350 2X An UncertParameter object may define either the attribute distrib:value or distrib:var,

but not both. (Reference: SBML Level 3 Specification for Distributions, Version 1, Sec-

tion 3.11 on page 19.)

distrib-20351 2X An UncertParameter object may define either the attribute distrib:value or distrib:var,

but not both. (Reference: SBML Level 3 Specification for Distributions, Version 1, Sec-

tion 3.11 on page 19.)

distrib-20352 2X An UncertParameter object with a type of “coeffientOfVariation”, “kurtosis”, “mean”,

“median”, “mode”, “sampleSize”, “skewness”, “standardDeviation”, “standardError”, or

“variance” may not define the attribute distrib:definitionURL. (Reference: SBML Level 3

Specification for Distributions, Version 1, Section 3.11 on page 19.)

distrib-20353 2X An UncertParameter object with a type of “coeffientOfVariation”, “kurtosis”, “mean”,

“median”, “mode”, “sampleSize”, “skewness”, “standardDeviation”, “standardError”, or

“variance” may not define a child Math or ListOfUncertParameters object. (Reference: SBML

Level 3 Specification for Distributions, Version 1, Section 3.11 on page 19.)

distrib-20354 2X An UncertParameter object with a type of “distribution” may not define the attributes

distrib:value or distrib:var. (Reference: SBML Level 3 Specification for Distributions,

Version 1, Section 3.11 on page 19.)

Rules for Uncertainty object

distrib-20401 2X An Uncertainty object may have the optional SBML Level 3 Core attributes metaid and

sboTerm. No other attributes from the SBML Level 3 Core namespaces are permitted on

an Uncertainty. (Reference: SBML Level 3 Version 1 Core, Section 3.2.)

Appendix Contents Page 40 of 44

Section A. Validation of SBML documents

distrib-20402 2X An Uncertainty object may have the optional SBML Level 3 Core subobjects for notes and

annotations. No other elements from the SBML Level 3 Core namespaces are permitted on an

Uncertainty. (Reference: SBML Level 3 Version 1 Core, Section 3.2.)

distrib-20403 2X An Uncertainty object may contain one and only one instance of the ListOfUncertParameters

element. No other elements from the SBML Level 3 Distributions namespaces are permitted

on an Uncertainty object. (Reference: SBML Level 3 Specification for Distributions, Version 1,

Section 3.10 on page 18.)

distrib-20404 2X An Uncertainty object may have the optional attributes distrib:id and distrib:name. No

other attributes from the SBML Level 3 Distributions namespaces are permitted on an Un-

certSpan object. (Reference: SBML Level 3 Specification for Distributions, Version 1, Sec-

tion 3.10 on page 18.)

distrib-20450 2X An Uncertainty object may have only one or zero UncertParameter children of each of the

following types: “distribution”, “coeffientOfVariation”, “kurtosis”, “mean”, “median”,

“mode”, “sampleSize”, “skewness”, “standardDeviation”, “standardError”, or “variance”.

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.10 on page 18.)

distrib-20451 2X An Uncertainty object may have only one or zero UncertSpan children of each of the follow-

ing types: “confidenceInterval”, “credibleInterval”, “interquartileRange” or “range”.

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.10 on page 18.)

Rules for UncertSpan object

distrib-20501 2X An UncertSpan object may have the optional SBML Level 3 Core attributes metaid and

sboTerm. No other attributes from the SBML Level 3 Core namespaces are permitted on

an UncertSpan. (Reference: SBML Level 3 Version 1 Core, Section 3.2.)

distrib-20502 2X An UncertSpan object may have the optional SBML Level 3 Core subobjects for notes and

annotations. No other elements from the SBML Level 3 Core namespaces are permitted on an

UncertSpan. (Reference: SBML Level 3 Version 1 Core, Section 3.2.)

distrib-20503 2X An UncertSpan object must have the required attribute distrib:type, and may have the

optional attributes distrib:id, distrib:name, distrib:value, distrib:var, distrib:-

units and distrib:definitionURL, distrib:varLower, distrib:valueLower, distrib:-

varUpper and distrib:valueUpper. No other attributes from the SBML Level 3 Distributions

namespaces are permitted on an UncertSpan object. (Reference: SBML Level 3 Specification

for Distributions, Version 1, Section 3.12 on page 21.)

distrib-20504 2X The value of the attribute distrib:varLower of an UncertSpan object must be the identifier

of an existing object derived from the SBase class and defined in the enclosing Model object.

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.12 on page 21.)

distrib-20505 2X The attribute distrib:valueLower on an UncertSpan must have a value of data type double.

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.12 on page 21.)

distrib-20506 2X The value of the attribute distrib:varUpper of an UncertSpan object must be the identifier

of an existing object derived from the SBase class and defined in the enclosing Model object.

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.12 on page 21.)

distrib-20507 2X The attribute distrib:valueUpper on an UncertSpan must have a value of data type double.

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.12 on page 21.)

distrib-20550 2X An UncertSpan object may define either the attribute distrib:valueLower or distrib:-

varLower, but not both. (Reference: SBML Level 3 Specification for Distributions, Version 1,

Section 3.11 on page 19.)

Section Contents Page 41 of 44

Appendix A. Validation of SBML documents

distrib-20551 2X An UncertSpan object may define either the attribute distrib:valueUpper or distrib:-

varUpper, but not both. (Reference: SBML Level 3 Specification for Distributions, Version 1,

Section 3.11 on page 19.)

distrib-20552 2X The value of the attribute distrib:type of an UncertSpan object must be a subset of the

allowed values of SBML data type UncertType, that is, the value must be one of the fol-

lowing: “externalParameter”, “confidenceInterval”, “credibleInterval”, “interquar-

tileRange” or “range”. (Reference: SBML Level 3 Specification for Distributions, Version 1,

Section 3.11 on page 19.)

distrib-20553 2X An UncertSpan object with a type of “confidenceInterval”, “credibleInterval”, “inter-

quartileRange” or “range” may not define the attributes distrib:value, distrib:var, or

distrib:definitionURL. (Reference: SBML Level 3 Specification for Distributions, Version 1,

Section 3.11 on page 19.)

distrib-20554 2X An UncertSpan object with a type of “confidenceInterval”, “credibleInterval”, “inter-

quartileRange” or “range” may not define a child Math or ListOfUncertParameters object.

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on page 19.)

Appendix Contents Page 42 of 44

B Acknowledgments

Much of the initial concrete work leading to this proposal document was carried out at the Statistical Models

Workshop in Hinxton in 2011, which was organized by Nicolas Le Novère. A list of participants and recordings of the

discussion is available from http://sbml.org/Events/Other_Events/statistical_models_workshop_2011.

Before that a lot of the ground work was carried out by Darren Wilkinson who led the discussion on distrib at the

Seattle SBML Hackathon and before that Colin Gillespie who wrote an initial proposal back in 2005. The authors

would also like to thank the participants of the distrib sessions during various HARMONY and COMBINE meetings

for their excellent contributions in helping revising this proposal; Sarah Keating, Maciej Swat, Nicolas Le Novère,

and Matthias König for useful discussions, corrections and review comments; and Mike Hucka for LATEX advice, text

editing, and the template upon which this document is based.

Appendix Contents Page 43 of 44

References

Biron, P. V. and Malhotra, A. (2000). XML Schema part 2: Datatypes (W3C candidate recommendation 24 October

2000). Available via the World Wide Web at http://www.w3.org/TR/xmlschema-2/.

Eriksson, H.-E. and Penker, M. (1998). UML Toolkit. John Wiley & Sons, New York.

Fallside, D. C. (2000). XML Schema part 0: Primer (W3C candidate recommendation 24 October 2000). Available

via the World Wide Web at http://www.w3.org/TR/xmlschema-0/.

Oestereich, B. (1999). Developing Software with UML: Object-Oriented Analysis and Design in Practice. Addison-

Wesley Publishing Company.

Swat, M., Grenon, P., and S.M.Wimalaratne (2016). Probonto - ontology and knowledge base of probability

distributions. Bioinformatics, 17(32):2719–2721.

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2000). XML Schema part 1: Structures (W3C

candidate recommendation 24 October 2000). Available online via the World Wide Web at the address http:

//www.w3.org/TR/xmlschema-1/.

Appendix Contents Page 44 of 44

	Systems Biology Markup Language (SBML) Level 3 Package: Distributions, Version 1, Release 1
	JIB-2020-0018_proof_Old.pdf
	Systems Biology Markup Language (SBML) Level 3 Package: Distributions, Version 1, Release 1

